Guangzhen Zheng , Xiangyang Cao , Yi Jing , Ling Wang , Ruixue Yan , Yan Ji , Yuhan Zhang , Heng Li , Yunpeng Wang , Yingying Shi , Yadong Yu , Qingping Xiong
{"title":"An integrative approach for mechanistic insights into the atherosclerotic plaque-stabilizing properties of Danggui Buxue decoction","authors":"Guangzhen Zheng , Xiangyang Cao , Yi Jing , Ling Wang , Ruixue Yan , Yan Ji , Yuhan Zhang , Heng Li , Yunpeng Wang , Yingying Shi , Yadong Yu , Qingping Xiong","doi":"10.1016/j.jep.2025.119450","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Danggui Buxue Decoction (DBD), a traditional Chinese medicinal formula, has historically been used for cardiovascular health, including managing atherosclerotic plaques (ASP). However, its precise mechanisms remain elusive.</div></div><div><h3>Aim of the study</h3><div>The purpose of this study was to use a novel integrative bioinformatics analysis and experimental validation approach to provide a molecular basis for ASP's stabilization by DBD.</div></div><div><h3>Materials and methods</h3><div>A mice model of ApoE-deficient atherosclerosis fed with a high-fat diet was employed to evaluate the efficacy of DBD in stabilizing ASP. The potential mechanism underlying the stabilization effect of DBD on ASP was systematically investigated using an integrated approach combining network pharmacology, molecular docking, and molecular dynamics simulation. Additionally, an ox-LDL-induced macrophage foam cell model and multivariate statistical analysis were utilized to validate the pharmacodynamic material basis and target of DBD in stabilizing ASP.</div></div><div><h3>Results</h3><div>Firstly, it was found that DBD can significantly alleviate ASP, which was manifested as a significant reduction in the atherosclerosis index, ratio of area for plaque to lumen, and vulnerability index. Afterwards, network pharmacology investigation identified quercetin and kaempferol as the primary active compounds in DBD anti-ASP. Key core targets mainly involved TP53, AKT1, IL-6 and TNF. The main action pathways included lipid and atherosclerosis, PI3K-Akt signaling, and other pathways. Subsequently, molecular docking and molecular dynamics simulation results confirmed the strong stability of the main active compounds with the key target. Finally, the cell validation experiment <em>in vitro</em> revealed that both quercetin and kaempferol could significantly inhibit RAW264.7 macrophage foaming formation induced by ox-LDL and improve its lipid metabolism disorder. Meanwhile, they could also significantly reverse ox-LDL induced abnormal expression of core protein predicted by network pharmacology in RAW264.7 foam cells. Further correlation analysis revealed that the improvement effect of quercetin and kaempferol on macrophage foaming had a close correlation with the inhibition of core protein expression.</div></div><div><h3>Conclusion</h3><div>DBD mainly utilized active ingredients such as quercetin and kaempferol, through regulating multiple targets like TP53, AKT1, IL-6 and TNF, to stabilize ASP.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"343 ","pages":"Article 119450"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125001333","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance
Danggui Buxue Decoction (DBD), a traditional Chinese medicinal formula, has historically been used for cardiovascular health, including managing atherosclerotic plaques (ASP). However, its precise mechanisms remain elusive.
Aim of the study
The purpose of this study was to use a novel integrative bioinformatics analysis and experimental validation approach to provide a molecular basis for ASP's stabilization by DBD.
Materials and methods
A mice model of ApoE-deficient atherosclerosis fed with a high-fat diet was employed to evaluate the efficacy of DBD in stabilizing ASP. The potential mechanism underlying the stabilization effect of DBD on ASP was systematically investigated using an integrated approach combining network pharmacology, molecular docking, and molecular dynamics simulation. Additionally, an ox-LDL-induced macrophage foam cell model and multivariate statistical analysis were utilized to validate the pharmacodynamic material basis and target of DBD in stabilizing ASP.
Results
Firstly, it was found that DBD can significantly alleviate ASP, which was manifested as a significant reduction in the atherosclerosis index, ratio of area for plaque to lumen, and vulnerability index. Afterwards, network pharmacology investigation identified quercetin and kaempferol as the primary active compounds in DBD anti-ASP. Key core targets mainly involved TP53, AKT1, IL-6 and TNF. The main action pathways included lipid and atherosclerosis, PI3K-Akt signaling, and other pathways. Subsequently, molecular docking and molecular dynamics simulation results confirmed the strong stability of the main active compounds with the key target. Finally, the cell validation experiment in vitro revealed that both quercetin and kaempferol could significantly inhibit RAW264.7 macrophage foaming formation induced by ox-LDL and improve its lipid metabolism disorder. Meanwhile, they could also significantly reverse ox-LDL induced abnormal expression of core protein predicted by network pharmacology in RAW264.7 foam cells. Further correlation analysis revealed that the improvement effect of quercetin and kaempferol on macrophage foaming had a close correlation with the inhibition of core protein expression.
Conclusion
DBD mainly utilized active ingredients such as quercetin and kaempferol, through regulating multiple targets like TP53, AKT1, IL-6 and TNF, to stabilize ASP.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.