Polyethylene terephthalate nanoplastics-induced neurotoxicity in adult male Swiss albino mice with amelioration of betaine: a histopathological, neurochemical, and molecular investigation.
Nehal A Kamel, Dina W Bashir, Ebtihal M M El-Leithy, Adel F Tohamy, Maha M Rashad, Ghada E Ali, Abdel Aleem A El-Saba
{"title":"Polyethylene terephthalate nanoplastics-induced neurotoxicity in adult male Swiss albino mice with amelioration of betaine: a histopathological, neurochemical, and molecular investigation.","authors":"Nehal A Kamel, Dina W Bashir, Ebtihal M M El-Leithy, Adel F Tohamy, Maha M Rashad, Ghada E Ali, Abdel Aleem A El-Saba","doi":"10.1007/s00210-025-03867-9","DOIUrl":null,"url":null,"abstract":"<p><p>Medicines, food packaging, personal care products, and cosmetics extensively use polyethylene terephthalate nanoplastics (PET-NaPs). However, they also have harmful impacts on several organs. Betaine demonstrates potent antioxidant and anti-inflammatory characteristics. Our goal was to investigate the detrimental impact of PET-NaPs on the mouse brain and evaluate the neuroprotective properties of betaine. We allocated 40 completely mature male Swiss albino mice into four distinct groups: control group, betaine group, PET-NaPs group, and betaine-co-treated group. Following a 30-day duration, euthanasia was performed on the mice, and analyzed tissue samples were obtained from the cerebrum, cerebellum, and hippocampus. PET-NaPs resulted in an elevated level of malondialdehyde and upregulated cyclooxygenase-2 and interleukin-1 beta (IL-1β) expression while significantly reducing the levels of glutathione and downregulating acetylcholinesterase. The PET-NPs also caused significant changes in the histopathology of the brain tissue, and there was a demonstrable rise in the immunostaining of IL-1β and glial fibrillary acidic proteins. Consequently, betaine effectively alleviated the negative consequences of PET-NaPs. Therefore, betaine possesses the capacity to mitigate the neurotoxic consequences induced by PET-NaPs.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03867-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Medicines, food packaging, personal care products, and cosmetics extensively use polyethylene terephthalate nanoplastics (PET-NaPs). However, they also have harmful impacts on several organs. Betaine demonstrates potent antioxidant and anti-inflammatory characteristics. Our goal was to investigate the detrimental impact of PET-NaPs on the mouse brain and evaluate the neuroprotective properties of betaine. We allocated 40 completely mature male Swiss albino mice into four distinct groups: control group, betaine group, PET-NaPs group, and betaine-co-treated group. Following a 30-day duration, euthanasia was performed on the mice, and analyzed tissue samples were obtained from the cerebrum, cerebellum, and hippocampus. PET-NaPs resulted in an elevated level of malondialdehyde and upregulated cyclooxygenase-2 and interleukin-1 beta (IL-1β) expression while significantly reducing the levels of glutathione and downregulating acetylcholinesterase. The PET-NPs also caused significant changes in the histopathology of the brain tissue, and there was a demonstrable rise in the immunostaining of IL-1β and glial fibrillary acidic proteins. Consequently, betaine effectively alleviated the negative consequences of PET-NaPs. Therefore, betaine possesses the capacity to mitigate the neurotoxic consequences induced by PET-NaPs.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.