Eman Sweed, Suzan A Khodir, Shaimaa Mohamed Motawea, Hala El-Haron, Basma Abdelnaby Mostafa, Mona S Elkholy, Mohammud Salim, Doaa Z M Shebl
{"title":"Targeting the sigma-1 receptor with pridopidine induces functional neurorestoration in spinal cord ischemia-reperfusion injury.","authors":"Eman Sweed, Suzan A Khodir, Shaimaa Mohamed Motawea, Hala El-Haron, Basma Abdelnaby Mostafa, Mona S Elkholy, Mohammud Salim, Doaa Z M Shebl","doi":"10.1007/s00210-025-03851-3","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord ischemia reperfusion injury (IRI) occurs with an incidence of 1-32%, often leading to paraplegia with limited prevention options. Pridopidine (Prdpn), a highly selective sigma-1 receptor (Sig-1R) agonist, serves as a protein chaperone that is engaged in neuroplasticity and cellular defense. This research aimed to assess the neuroprotective properties of Prdpn in spinal cord IRI in rats and investigate the underlying mechanisms. Forty male Wistar albino rats were randomly allocated into 4 groups: control, sham, IRI, and IRI + Prdpn. Tarlov's test was used to examine behavioral performance, as well as withdrawal from agonizing stimuli and the placing/stepping reflex (SPR). Biochemical markers, including spinal malondialdehyde (MDA), AOPP, antioxidant GPX, TNF-α and IL-1β, and apoptotic caspase-3, were measured, along with BDNF, GDNF, and Sig-1R gene expression. Histopathological changes in spinal cord tissue were also evaluated. Spinal cord IRI significantly caused neurological deficits, evidenced by lower scores in Tarlov's test, withdrawal from agonizing stimuli, and SPR. Biochemically, spinal cord IRI led to decreased GPX and increased MDA, AOPP, TNF-α, IL-1β, caspase-3, and GDNF levels, along with downregulated BDNF and Sig-1R gene expression. Histopathologically, spinal cord IRI resulted in greater spinal neuronal degeneration, apoptosis, and demyelination. However, treatment with Prdpn significantly improved behavioral outcomes and partially reversed the biochemical and histopathological alterations. Prdpn improved spinal cord IRI-induced behavioral deficits through its antioxidant, anti-inflammatory, anti-apoptotic, and neurotrophic properties. It suggests promise as a potential treatment option to stop spinal cord IRI.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03851-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord ischemia reperfusion injury (IRI) occurs with an incidence of 1-32%, often leading to paraplegia with limited prevention options. Pridopidine (Prdpn), a highly selective sigma-1 receptor (Sig-1R) agonist, serves as a protein chaperone that is engaged in neuroplasticity and cellular defense. This research aimed to assess the neuroprotective properties of Prdpn in spinal cord IRI in rats and investigate the underlying mechanisms. Forty male Wistar albino rats were randomly allocated into 4 groups: control, sham, IRI, and IRI + Prdpn. Tarlov's test was used to examine behavioral performance, as well as withdrawal from agonizing stimuli and the placing/stepping reflex (SPR). Biochemical markers, including spinal malondialdehyde (MDA), AOPP, antioxidant GPX, TNF-α and IL-1β, and apoptotic caspase-3, were measured, along with BDNF, GDNF, and Sig-1R gene expression. Histopathological changes in spinal cord tissue were also evaluated. Spinal cord IRI significantly caused neurological deficits, evidenced by lower scores in Tarlov's test, withdrawal from agonizing stimuli, and SPR. Biochemically, spinal cord IRI led to decreased GPX and increased MDA, AOPP, TNF-α, IL-1β, caspase-3, and GDNF levels, along with downregulated BDNF and Sig-1R gene expression. Histopathologically, spinal cord IRI resulted in greater spinal neuronal degeneration, apoptosis, and demyelination. However, treatment with Prdpn significantly improved behavioral outcomes and partially reversed the biochemical and histopathological alterations. Prdpn improved spinal cord IRI-induced behavioral deficits through its antioxidant, anti-inflammatory, anti-apoptotic, and neurotrophic properties. It suggests promise as a potential treatment option to stop spinal cord IRI.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.