FBXO45 restricts HIV-1 replication by inducing SQSTM1/p62-mediated autophagic degradation of Tat.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-03-18 Epub Date: 2025-02-12 DOI:10.1128/jvi.01912-24
Mingxiu Xu, Haobo Hu, Weijing Yang, Jiaxiang Zhang, Hong Wang, Wenyan Zhang, Chen Huan
{"title":"FBXO45 restricts HIV-1 replication by inducing SQSTM1/p62-mediated autophagic degradation of Tat.","authors":"Mingxiu Xu, Haobo Hu, Weijing Yang, Jiaxiang Zhang, Hong Wang, Wenyan Zhang, Chen Huan","doi":"10.1128/jvi.01912-24","DOIUrl":null,"url":null,"abstract":"<p><p>As a key regulator of human immunodeficiency virus type 1 (HIV-1) transcription, Tat plays an essential role in viral replication and latency, making it a promising target for designing viral control strategies. Identifying host factors that modulate Tat and exploring the underlying mechanisms will benefit our understanding of HIV-1 transcriptional regulation and provide valuable insights into Tat-based therapeutic strategies. Here, by employing the TurboID approach, we discovered high-affinity binding between FBXO45 and Tat. Our findings demonstrate that FBXO45 negatively regulates Tat by promoting Tat ubiquitination and directing it to autophagic degradation. Autophagic degradation of Tat has been reported, but the specific underlying mechanisms remain unidentified. We elucidated this issue by providing evidence that FBXO45-mediated Tat polyubiquitination is an essential prerequisite for this process. Silencing of FBXO45 leads to a deficiency of autophagy receptor SQSTM1/p62 to bind and facilitate the autophagic degradation of Tat. Our results further underscore the crosstalk between post-translational modifications of Tat by demonstrating that the phosphorylation site of the Tat S62 residue is required for ubiquitination induced by FBXO45. Furthermore, in the context of the regulation of HIV-1, FBXO45 inhibits viral replication and maintains the latency of HIV-1 by suppressing viral transcription. Importantly, FBXO45 overexpression significantly attenuated viral rebound after antiretroviral therapy withdrawal. In summary, our findings suggest a novel role for FBXO45 in regulating HIV-1 replication by inducing the ubiquitination and SQSTM1/p62-dependent autophagic degradation of Tat. Considering the indispensable role of Tat in the regulation of HIV-1 replication and reactivation, FBXO45 may be a potential target for therapeutic intervention against HIV-1.IMPORTANCEHIV-1 Tat plays an indispensable role in regulating viral transcription and is a promising target for achieving a functional cure for AIDS. Identifying the host factors that modulate Tat expression could benefit the development of anti-HIV-1 strategies targeting Tat. Using TurboID assay, we identified a significant interaction between FBXO45 and Tat. Functionally, FBXO45 ubiquitinates and directs Tat for SQSTM1/p62-mediated autophagic degradation, thereby effectively restricting HIV-1 replication and maintaining HIV-1 latency by suppressing Tat-dependent viral transcription. These findings uncover a novel role for FBXO45 in regulating Tat and broaden our understanding of the host mechanisms involved in Tat processing.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0191224"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11916737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01912-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a key regulator of human immunodeficiency virus type 1 (HIV-1) transcription, Tat plays an essential role in viral replication and latency, making it a promising target for designing viral control strategies. Identifying host factors that modulate Tat and exploring the underlying mechanisms will benefit our understanding of HIV-1 transcriptional regulation and provide valuable insights into Tat-based therapeutic strategies. Here, by employing the TurboID approach, we discovered high-affinity binding between FBXO45 and Tat. Our findings demonstrate that FBXO45 negatively regulates Tat by promoting Tat ubiquitination and directing it to autophagic degradation. Autophagic degradation of Tat has been reported, but the specific underlying mechanisms remain unidentified. We elucidated this issue by providing evidence that FBXO45-mediated Tat polyubiquitination is an essential prerequisite for this process. Silencing of FBXO45 leads to a deficiency of autophagy receptor SQSTM1/p62 to bind and facilitate the autophagic degradation of Tat. Our results further underscore the crosstalk between post-translational modifications of Tat by demonstrating that the phosphorylation site of the Tat S62 residue is required for ubiquitination induced by FBXO45. Furthermore, in the context of the regulation of HIV-1, FBXO45 inhibits viral replication and maintains the latency of HIV-1 by suppressing viral transcription. Importantly, FBXO45 overexpression significantly attenuated viral rebound after antiretroviral therapy withdrawal. In summary, our findings suggest a novel role for FBXO45 in regulating HIV-1 replication by inducing the ubiquitination and SQSTM1/p62-dependent autophagic degradation of Tat. Considering the indispensable role of Tat in the regulation of HIV-1 replication and reactivation, FBXO45 may be a potential target for therapeutic intervention against HIV-1.IMPORTANCEHIV-1 Tat plays an indispensable role in regulating viral transcription and is a promising target for achieving a functional cure for AIDS. Identifying the host factors that modulate Tat expression could benefit the development of anti-HIV-1 strategies targeting Tat. Using TurboID assay, we identified a significant interaction between FBXO45 and Tat. Functionally, FBXO45 ubiquitinates and directs Tat for SQSTM1/p62-mediated autophagic degradation, thereby effectively restricting HIV-1 replication and maintaining HIV-1 latency by suppressing Tat-dependent viral transcription. These findings uncover a novel role for FBXO45 in regulating Tat and broaden our understanding of the host mechanisms involved in Tat processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
A parainfluenza virus 5 (PIV5)-vectored intranasal SARS-CoV-2 vaccine (CVXGA1) elicits protective and long-lasting immunity in nonhuman primates. Development of ferret immune repertoire reference resources and single-cell-based high-throughput profiling assays. Efficacy of parainfluenza virus 5 (PIV5)-vectored intranasal COVID-19 vaccine as a single dose primer and booster against SARS-CoV-2 variants. Hairpin inserts in viral genomes are stable when they conform to the thermodynamic properties of viral RNA substructures. SARS-CoV-2 cellular coinfection is limited by superinfection exclusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1