Fabrication of thin-film electrodes and organic electrochemical transistors for neural implants.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2025-02-11 DOI:10.1038/s41596-024-01116-6
Poppy Oldroyd, Santiago Velasco-Bosom, Sophia L Bidinger, Tawfique Hasan, Alexander J Boys, George G Malliaras
{"title":"Fabrication of thin-film electrodes and organic electrochemical transistors for neural implants.","authors":"Poppy Oldroyd, Santiago Velasco-Bosom, Sophia L Bidinger, Tawfique Hasan, Alexander J Boys, George G Malliaras","doi":"10.1038/s41596-024-01116-6","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectronic medicine, which involves the delivery of electrical stimulation via implantable electrodes, is poised to advance the treatment of neurological conditions. However, current hand-made devices are bulky, invasive and lack specificity. Thin-film neurotechnology devices can overcome these disadvantages. With a typical thickness in the range of micrometers, thin-film devices demonstrate high conformability, stretchability, are minimally invasive and can be fabricated using traditional lithography techniques. Despite their potential, variability and unreliability in fabrication processes hinder their wider utilization. Here, we detail a fabrication method for thin-film poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes and organic electrochemical transistors. The use of organic materials makes these devices particularly well suited for bioelectronic medicine applications as they show superior mechanical and electrical matching of biological tissues compared with devices made of inorganic materials. The procedure details the entire process, including mask design, the fabrication through three photolithography stages, the integration with larger-scale electronics, implantation procedures and the expected electrical characterization metrics. The nanofabrication protocol requires at least 3 d and is suitable for those familiar with lithographic fabrication procedures. The surgery requires up to 10 h and is suitable for those familiar with in vivo implantation procedures.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01116-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioelectronic medicine, which involves the delivery of electrical stimulation via implantable electrodes, is poised to advance the treatment of neurological conditions. However, current hand-made devices are bulky, invasive and lack specificity. Thin-film neurotechnology devices can overcome these disadvantages. With a typical thickness in the range of micrometers, thin-film devices demonstrate high conformability, stretchability, are minimally invasive and can be fabricated using traditional lithography techniques. Despite their potential, variability and unreliability in fabrication processes hinder their wider utilization. Here, we detail a fabrication method for thin-film poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes and organic electrochemical transistors. The use of organic materials makes these devices particularly well suited for bioelectronic medicine applications as they show superior mechanical and electrical matching of biological tissues compared with devices made of inorganic materials. The procedure details the entire process, including mask design, the fabrication through three photolithography stages, the integration with larger-scale electronics, implantation procedures and the expected electrical characterization metrics. The nanofabrication protocol requires at least 3 d and is suitable for those familiar with lithographic fabrication procedures. The surgery requires up to 10 h and is suitable for those familiar with in vivo implantation procedures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
Sonication-assisted protein extraction improves proteomic detection of membrane-bound and DNA-binding proteins from tumor tissues. Synthesis of bicyclo[3.1.1]heptanes, meta-substituted arene isosteres, from [3.1.1]propellane. Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging. Massively parallel in vivo Perturb-seq screening. Single-cell CRISPR screening in mouse brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1