Plus-strand RNA viruses hijack Musashi homolog 1 to shield viral RNA from cytoplasmic ribonuclease degradation.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-02-12 DOI:10.1128/jvi.00023-25
Defang Zhou, Menglu Xu, Qingjie Liu, Ruixue Xin, Gege Cui, Longying Ding, Xiaoyang Liu, Xinyue Zhang, Tianxing Yan, Jing Zhou, Shuhai He, Liangyu Yang, Bin Xiang, Ziqiang Cheng
{"title":"Plus-strand RNA viruses hijack Musashi homolog 1 to shield viral RNA from cytoplasmic ribonuclease degradation.","authors":"Defang Zhou, Menglu Xu, Qingjie Liu, Ruixue Xin, Gege Cui, Longying Ding, Xiaoyang Liu, Xinyue Zhang, Tianxing Yan, Jing Zhou, Shuhai He, Liangyu Yang, Bin Xiang, Ziqiang Cheng","doi":"10.1128/jvi.00023-25","DOIUrl":null,"url":null,"abstract":"<p><p>A successful strategy employed by RNA viruses to achieve replication is to evade host cell RNase degradation. However, the mechanisms through which plus-strand RNA viruses effectively shield viral RNA from cellular ribonuclease degradation remain unclear. In this study, we identified the phenomenon whereby plus-strand RNA viruses, including avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), hijacked host cellular Musashi homolog 1 (MSI1). These viruses upregulated MSI1 expression and facilitated its translocation from the cytoplasmic periphery to a position proximal to and within the nucleus, thereby protecting viral RNA from degradation. Mechanistic analyses revealed that these viruses use distinct regions, the unique (U3) region or three prime untranslated region (3'UTR), to engage with MSI1, consequently shielding their viral RNA from cytoplasmic ribonuclease degradation. These results offer significant implications for understanding the replication tactics used by plus-strand RNA viruses, thereby advancing our understanding of their biological behaviors.IMPORTANCEThe intricate interplay between RNA viruses and host cell RNA regulation encompasses viral mechanisms designed to circumvent RNase-mediated degradation. However, the specific strategies employed by plus-strand RNA viruses to shield their RNA from host ribonucleases remain inadequately characterized. In this study, Musashi homolog 1 (MSI1) is predominantly localized in the cytoplasm of normal cells, distinct from the nucleus. Following infection by plus-strand RNA viruses such as avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), these viruses hijack MSI1 to relocate near and within the nucleus. This hijacking is facilitated by specific regions, including unique or three prime untranslated regions, thereby preventing viral RNA from degradation by cytoplasmic ribonucleases. These findings have significant implications for elucidating the replication strategies of plus-strand RNA viruses, thereby advancing our understanding of their biological mechanisms.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0002325"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00023-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A successful strategy employed by RNA viruses to achieve replication is to evade host cell RNase degradation. However, the mechanisms through which plus-strand RNA viruses effectively shield viral RNA from cellular ribonuclease degradation remain unclear. In this study, we identified the phenomenon whereby plus-strand RNA viruses, including avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), hijacked host cellular Musashi homolog 1 (MSI1). These viruses upregulated MSI1 expression and facilitated its translocation from the cytoplasmic periphery to a position proximal to and within the nucleus, thereby protecting viral RNA from degradation. Mechanistic analyses revealed that these viruses use distinct regions, the unique (U3) region or three prime untranslated region (3'UTR), to engage with MSI1, consequently shielding their viral RNA from cytoplasmic ribonuclease degradation. These results offer significant implications for understanding the replication tactics used by plus-strand RNA viruses, thereby advancing our understanding of their biological behaviors.IMPORTANCEThe intricate interplay between RNA viruses and host cell RNA regulation encompasses viral mechanisms designed to circumvent RNase-mediated degradation. However, the specific strategies employed by plus-strand RNA viruses to shield their RNA from host ribonucleases remain inadequately characterized. In this study, Musashi homolog 1 (MSI1) is predominantly localized in the cytoplasm of normal cells, distinct from the nucleus. Following infection by plus-strand RNA viruses such as avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), these viruses hijack MSI1 to relocate near and within the nucleus. This hijacking is facilitated by specific regions, including unique or three prime untranslated regions, thereby preventing viral RNA from degradation by cytoplasmic ribonucleases. These findings have significant implications for elucidating the replication strategies of plus-strand RNA viruses, thereby advancing our understanding of their biological mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein. Tracing more than two decades of Japanese encephalitis virus circulation in mainland China. A capsidless (+)RNA yadokarivirus hosted by a dsRNA virus is infectious as particles, cDNA, and dsRNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1