A molecular mechanism mediating clozapine-enhanced sensorimotor gating.

IF 6.6 1区 医学 Q1 NEUROSCIENCES Neuropsychopharmacology Pub Date : 2025-02-11 DOI:10.1038/s41386-025-02060-z
Ioannis Mantas, Ivana Flais, Niclas Branzell, Tudor M Ionescu, Eugene Kim, Xiaoqun Zhang, Diana Cash, Bastian Hengerer, Per Svenningsson
{"title":"A molecular mechanism mediating clozapine-enhanced sensorimotor gating.","authors":"Ioannis Mantas, Ivana Flais, Niclas Branzell, Tudor M Ionescu, Eugene Kim, Xiaoqun Zhang, Diana Cash, Bastian Hengerer, Per Svenningsson","doi":"10.1038/s41386-025-02060-z","DOIUrl":null,"url":null,"abstract":"<p><p>The atypical antipsychotic clozapine targets multiple receptor systems beyond the dopaminergic pathway and influences prepulse inhibition (PPI), a critical translational measure of sensorimotor gating. Since PPI is modulated by atypical antipsychotics such as risperidone and clozapine, we hypothesized that p11-an adaptor protein associated with anxiety- and depressive-like behaviors and G-protein-coupled receptor function-might modulate these effects. In this study, we assessed the role of p11 in clozapine's PPI-enhancing effect by testing wild-type and global p11 knockout (KO) mice in response to haloperidol, risperidone, and clozapine. We also performed structural and functional brain imaging. Contrary to our expectation that anxiety-like p11-KO mice would exhibit an augmented startle response and heightened sensitivity to clozapine, PPI tests showed that p11-KO mice were unresponsive to the PPI-enhancing effects of risperidone and clozapine. Imaging revealed distinct regional brain volume differences and reduced hippocampal connectivity in p11-KO mice, with significantly blunted clozapine-induced connectivity changes in the CA1 region. Our findings highlight a novel role for p11 in modulating clozapine's effects on sensorimotor gating and hippocampal connectivity, offering new insight into its functional pathways.</p>","PeriodicalId":19143,"journal":{"name":"Neuropsychopharmacology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41386-025-02060-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The atypical antipsychotic clozapine targets multiple receptor systems beyond the dopaminergic pathway and influences prepulse inhibition (PPI), a critical translational measure of sensorimotor gating. Since PPI is modulated by atypical antipsychotics such as risperidone and clozapine, we hypothesized that p11-an adaptor protein associated with anxiety- and depressive-like behaviors and G-protein-coupled receptor function-might modulate these effects. In this study, we assessed the role of p11 in clozapine's PPI-enhancing effect by testing wild-type and global p11 knockout (KO) mice in response to haloperidol, risperidone, and clozapine. We also performed structural and functional brain imaging. Contrary to our expectation that anxiety-like p11-KO mice would exhibit an augmented startle response and heightened sensitivity to clozapine, PPI tests showed that p11-KO mice were unresponsive to the PPI-enhancing effects of risperidone and clozapine. Imaging revealed distinct regional brain volume differences and reduced hippocampal connectivity in p11-KO mice, with significantly blunted clozapine-induced connectivity changes in the CA1 region. Our findings highlight a novel role for p11 in modulating clozapine's effects on sensorimotor gating and hippocampal connectivity, offering new insight into its functional pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropsychopharmacology
Neuropsychopharmacology 医学-精神病学
CiteScore
15.00
自引率
2.60%
发文量
240
审稿时长
2 months
期刊介绍: Neuropsychopharmacology is a reputable international scientific journal that serves as the official publication of the American College of Neuropsychopharmacology (ACNP). The journal's primary focus is on research that enhances our knowledge of the brain and behavior, with a particular emphasis on the molecular, cellular, physiological, and psychological aspects of substances that affect the central nervous system (CNS). It also aims to identify new molecular targets for the development of future drugs. The journal prioritizes original research reports, but it also welcomes mini-reviews and perspectives, which are often solicited by the editorial office. These types of articles provide valuable insights and syntheses of current research trends and future directions in the field of neuroscience and pharmacology.
期刊最新文献
Prediction of alcohol intake patterns with olfactory and gustatory brain connectivity networks. REM density predicts rapid antidepressant response to ketamine in individuals with treatment-resistant depression. Validation of L-type calcium channel blocker amlodipine as a novel ADHD treatment through cross-species analysis, drug-target Mendelian randomization, and clinical evidence from medical records. Frontostriatal regulation of brain circuits contributes to flexible decision making. Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles (Microtus ochrogaster).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1