Functional evaluation of novel compound heterozygous variants in SLC12A3 of Gitelman syndrome.

IF 3.4 2区 医学 Q2 GENETICS & HEREDITY Orphanet Journal of Rare Diseases Pub Date : 2025-02-11 DOI:10.1186/s13023-025-03577-8
Na Wang, Yuanxing Yang, Xiong Tian, Hongjun Fu, Shuaishuai Chen, Juping Du, Mengyi Xu, Haixia He, Bo Shen, Jiaqin Xu
{"title":"Functional evaluation of novel compound heterozygous variants in SLC12A3 of Gitelman syndrome.","authors":"Na Wang, Yuanxing Yang, Xiong Tian, Hongjun Fu, Shuaishuai Chen, Juping Du, Mengyi Xu, Haixia He, Bo Shen, Jiaqin Xu","doi":"10.1186/s13023-025-03577-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gitelman syndrome (GS) is an inherited renal tubular disorder characterized by hypokalemic alkalosis and hypomagnesemia, due to biallelic pathogenic variants in the solute carrier family 12 member 3 (SLC12A3) gene encoding a sodium-chloride (Na-Cl) cotransporter (NCC). This work aimed at identifying SLC12A3 variants in the GS pedigree and reveal the effect of the mutations on protein structure and function.</p><p><strong>Methods: </strong>Whole-exome sequencing (WES) and Sanger sequencing were performed in the pedigree. Configuration prediction of two mutant NCC proteins were achieved using SWISS-MODEL. The SLC12A3 missense mutants were generated by site-specific mutagenesis, and the protein expression, location and Na<sup>+</sup> uptake activity were assessed by using the HEK293T cell line.</p><p><strong>Results: </strong>Genetic analysis identified novel compound heterozygous SLC12A3 variants (c.718G > A/p.E240K and c.2675T > C/p.L892P) in the patient with typical GS phenotype. Both of her parents, elder brother and her son carried the heterozygous p.L892P variant, but only the elder brother exhibited mild hypokalemia. Bioinformatics tools predicted that both mutations were highly species conserved and pathogenic. The prediction of mutant protein indicated that p.E240K and p.L892P altered protein's secondary and three-dimensional (3D) structure and stability. Functional experiments revealed decreased protein expression and Na<sup>+</sup> uptake activity caused by these two variants, especially the p.L892P variant.</p><p><strong>Conclusion: </strong>Our study presents the genetic and functional evidence for the novel compound heterozygous loss-of-function variants in SLC12A3 that may synergistically cuase GS, and expands the mutation spectrum of SLC12A3 variants in patients with GS.</p>","PeriodicalId":19651,"journal":{"name":"Orphanet Journal of Rare Diseases","volume":"20 1","pages":"66"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orphanet Journal of Rare Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13023-025-03577-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gitelman syndrome (GS) is an inherited renal tubular disorder characterized by hypokalemic alkalosis and hypomagnesemia, due to biallelic pathogenic variants in the solute carrier family 12 member 3 (SLC12A3) gene encoding a sodium-chloride (Na-Cl) cotransporter (NCC). This work aimed at identifying SLC12A3 variants in the GS pedigree and reveal the effect of the mutations on protein structure and function.

Methods: Whole-exome sequencing (WES) and Sanger sequencing were performed in the pedigree. Configuration prediction of two mutant NCC proteins were achieved using SWISS-MODEL. The SLC12A3 missense mutants were generated by site-specific mutagenesis, and the protein expression, location and Na+ uptake activity were assessed by using the HEK293T cell line.

Results: Genetic analysis identified novel compound heterozygous SLC12A3 variants (c.718G > A/p.E240K and c.2675T > C/p.L892P) in the patient with typical GS phenotype. Both of her parents, elder brother and her son carried the heterozygous p.L892P variant, but only the elder brother exhibited mild hypokalemia. Bioinformatics tools predicted that both mutations were highly species conserved and pathogenic. The prediction of mutant protein indicated that p.E240K and p.L892P altered protein's secondary and three-dimensional (3D) structure and stability. Functional experiments revealed decreased protein expression and Na+ uptake activity caused by these two variants, especially the p.L892P variant.

Conclusion: Our study presents the genetic and functional evidence for the novel compound heterozygous loss-of-function variants in SLC12A3 that may synergistically cuase GS, and expands the mutation spectrum of SLC12A3 variants in patients with GS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Orphanet Journal of Rare Diseases
Orphanet Journal of Rare Diseases 医学-医学:研究与实验
CiteScore
6.30
自引率
8.10%
发文量
418
审稿时长
4-8 weeks
期刊介绍: Orphanet Journal of Rare Diseases is an open access, peer-reviewed journal that encompasses all aspects of rare diseases and orphan drugs. The journal publishes high-quality reviews on specific rare diseases. In addition, the journal may consider articles on clinical trial outcome reports, either positive or negative, and articles on public health issues in the field of rare diseases and orphan drugs. The journal does not accept case reports.
期刊最新文献
Prevalence and recurrence rates of spontaneous pneumothorax in patients with diffuse cystic lung diseases in China. The distribution of D4Z4 repeats in China and direct prenatal diagnosis of FSHD by optical genome mapping. The patient experience of CHAPLE disease: results from interviews conducted as part of a clinical trial for an ultra-rare condition. Functional evaluation of novel compound heterozygous variants in SLC12A3 of Gitelman syndrome. A phase 2 randomized, double-blind trial of ART-001, a selective PI3Kα inhibitor, for the treatment of slow-flow vascular malformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1