An integrated perspective on single-cell and spatial transcriptomic signatures in high-grade gliomas.

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2025-02-11 DOI:10.1038/s41698-025-00830-y
Célia Lemoine, Marc-Antoine Da Veiga, Bernard Rogister, Caroline Piette, Virginie Neirinckx
{"title":"An integrated perspective on single-cell and spatial transcriptomic signatures in high-grade gliomas.","authors":"Célia Lemoine, Marc-Antoine Da Veiga, Bernard Rogister, Caroline Piette, Virginie Neirinckx","doi":"10.1038/s41698-025-00830-y","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade gliomas (HGG) are incurable brain malignancies in children and adults. Breakthrough advances in transcriptomic technologies unveiled the intricate diversity of cellular states and their spatial organization within HGGs. We qualitatively integrated 55 neoplastic transcriptomic signatures described in 17 single-cell and spatial RNA sequencing-based studies. Our review delineates a spectrum of cellular states, represented by the expression of specific genes, which can be conceptualized along a \"reactive-developmental programs\" axis. Additionally, we discussed the potential cues influencing these cellular states, including how spatial organization may impact transcriptomic dynamics. Leveraging these insightful discoveries, we discussed a novel, evolutive way to integrate the different transcriptomic signatures in two or three dimensions, incorporating developmental states, their proliferative capacity, and their possible transition towards reactive states. This integrated analysis illuminates the diverse cellular landscape of HGGs and provides a valuable resource for further elucidation of malignant mechanisms, and for the design of therapeutic endeavors.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"44"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00830-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-grade gliomas (HGG) are incurable brain malignancies in children and adults. Breakthrough advances in transcriptomic technologies unveiled the intricate diversity of cellular states and their spatial organization within HGGs. We qualitatively integrated 55 neoplastic transcriptomic signatures described in 17 single-cell and spatial RNA sequencing-based studies. Our review delineates a spectrum of cellular states, represented by the expression of specific genes, which can be conceptualized along a "reactive-developmental programs" axis. Additionally, we discussed the potential cues influencing these cellular states, including how spatial organization may impact transcriptomic dynamics. Leveraging these insightful discoveries, we discussed a novel, evolutive way to integrate the different transcriptomic signatures in two or three dimensions, incorporating developmental states, their proliferative capacity, and their possible transition towards reactive states. This integrated analysis illuminates the diverse cellular landscape of HGGs and provides a valuable resource for further elucidation of malignant mechanisms, and for the design of therapeutic endeavors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Author Correction: An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study. An integrated perspective on single-cell and spatial transcriptomic signatures in high-grade gliomas. RevCAR-mediated T-cell response against PD-L1-expressing cells turns suppression into activation. Streptococcus lutetiensis inhibits CD8+ IL17A+ TRM cells and leads to gastric cancer progression and poor prognosis. Molecular characterization of mixed-histology endometrial carcinoma provides prognostic and therapeutic value over morphologic findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1