Joe Bracegirdle, John A Elix, Udayangani Mawalagedera, Yit-Heng Chooi, Cécile Gueidan
{"title":"An expanded database of high-resolution MS/MS spectra for lichen-derived natural products.","authors":"Joe Bracegirdle, John A Elix, Udayangani Mawalagedera, Yit-Heng Chooi, Cécile Gueidan","doi":"10.1038/s41597-025-04488-w","DOIUrl":null,"url":null,"abstract":"<p><p>The history of lichen compound identification has long relied on techniques such as spot tests and TLC, which have been surpassed in sensitivity and accuracy by modern metabolomic techniques such as high-resolution MS/MS. In 2019, Olivier-Jimenez et al. released the Lichen DataBase (LDB), a library containing the Q-TOF MS/MS spectra of 251 metabolites on the MetaboLights and GNPS platforms, that has been widely used for the identification of lichen-derived unknowns. To increase the compound coverage, we have generated the Orbitrap MS/MS spectra of a further 534 lichen-derived compounds from the metabolite library of Jack Elix, housed at the CANB herbarium (Canberra, Australia). This included 399 unique metabolites that are not in the LDB, bringing the total number combined to 650. Technical validation was achieved by investigating the compounds in three Australian lichen extracts using the Library Search and Molecular Networking tools on the GNPS platform. This update provides a much larger database for lichen compound identification, which we envisage will allow refining the lichen chemotaxonomy framework and contribute to compound discovery.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"244"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04488-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The history of lichen compound identification has long relied on techniques such as spot tests and TLC, which have been surpassed in sensitivity and accuracy by modern metabolomic techniques such as high-resolution MS/MS. In 2019, Olivier-Jimenez et al. released the Lichen DataBase (LDB), a library containing the Q-TOF MS/MS spectra of 251 metabolites on the MetaboLights and GNPS platforms, that has been widely used for the identification of lichen-derived unknowns. To increase the compound coverage, we have generated the Orbitrap MS/MS spectra of a further 534 lichen-derived compounds from the metabolite library of Jack Elix, housed at the CANB herbarium (Canberra, Australia). This included 399 unique metabolites that are not in the LDB, bringing the total number combined to 650. Technical validation was achieved by investigating the compounds in three Australian lichen extracts using the Library Search and Molecular Networking tools on the GNPS platform. This update provides a much larger database for lichen compound identification, which we envisage will allow refining the lichen chemotaxonomy framework and contribute to compound discovery.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.