Genetic and Plasma Proteomic Approaches to Identify Therapeutic Targets for Graves' Disease and Graves' Ophthalmopathy.

IF 6.2 Q1 IMMUNOLOGY ImmunoTargets and Therapy Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.2147/ITT.S494692
Chenxin Ke, Yuefeng Yu, Jiang Li, Yuetian Yu, Ying Sun, Yuying Wang, Bin Wang, Yingli Lu, Mengjun Tang, Ningjian Wang, Yi Chen
{"title":"Genetic and Plasma Proteomic Approaches to Identify Therapeutic Targets for Graves' Disease and Graves' Ophthalmopathy.","authors":"Chenxin Ke, Yuefeng Yu, Jiang Li, Yuetian Yu, Ying Sun, Yuying Wang, Bin Wang, Yingli Lu, Mengjun Tang, Ningjian Wang, Yi Chen","doi":"10.2147/ITT.S494692","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The blood proteome is a major source of biomarkers and therapeutic targets. We aimed to identify the causal proteins and potential targets for Graves' disease (GD) and Graves' ophthalmopathy (GO) via systematic genetic analyses.</p><p><strong>Methods: </strong>Genome-wide association studies (GWASs) on the UK Biobank- Pharma Proteomics Project (UKB-PPP) collected 2923 Olink proteins from 54,219 participants. We conducted a proteome-wide Mendelian randomization (MR) study with cis-pQTLs to identify candidate proteins for GD and GO risk. Colocalization analysis and the Heidi test were used to examine whether the identified proteins and diseases shared the same variant. More proteins with potential causal associations were identified in Summary-data-based MR (SMR) analyses using trans-pQTLs. Then, downstream analyses were performed to detect protein interactions, gene function, cell type-specific expression and druggable information.</p><p><strong>Results: </strong>This study genetically predicted levels of 62 plasma proteins were associated with GD risk. Four proteins (CD40, TINAGL1, GMPR and CXCL10) were prioritized with the evidence of sharing the same variants with GD. Specifically, some proteins had potential associations with GD with trans-pQTLs mapping in CD40. The four prioritized protein-coding genes were mainly enriched in the regulation of apoptotic and death processes. In addition, GMPR was associated with both GO and GD in a consistent direction. BTN1A1 and FCRL1 were prioritized as the causal proteins for GO onset and were not associated with GD.</p><p><strong>Conclusion: </strong>By synthesizing proteomic and genetic data, we identified several protein biomarkers for GD, with one linked to both GD and GO and two other protein biomarkers specific to GO onset, which provides valuable insights into the etiology and potential therapeutic targets for the two diseases.</p>","PeriodicalId":30986,"journal":{"name":"ImmunoTargets and Therapy","volume":"14 ","pages":"87-98"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoTargets and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/ITT.S494692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The blood proteome is a major source of biomarkers and therapeutic targets. We aimed to identify the causal proteins and potential targets for Graves' disease (GD) and Graves' ophthalmopathy (GO) via systematic genetic analyses.

Methods: Genome-wide association studies (GWASs) on the UK Biobank- Pharma Proteomics Project (UKB-PPP) collected 2923 Olink proteins from 54,219 participants. We conducted a proteome-wide Mendelian randomization (MR) study with cis-pQTLs to identify candidate proteins for GD and GO risk. Colocalization analysis and the Heidi test were used to examine whether the identified proteins and diseases shared the same variant. More proteins with potential causal associations were identified in Summary-data-based MR (SMR) analyses using trans-pQTLs. Then, downstream analyses were performed to detect protein interactions, gene function, cell type-specific expression and druggable information.

Results: This study genetically predicted levels of 62 plasma proteins were associated with GD risk. Four proteins (CD40, TINAGL1, GMPR and CXCL10) were prioritized with the evidence of sharing the same variants with GD. Specifically, some proteins had potential associations with GD with trans-pQTLs mapping in CD40. The four prioritized protein-coding genes were mainly enriched in the regulation of apoptotic and death processes. In addition, GMPR was associated with both GO and GD in a consistent direction. BTN1A1 and FCRL1 were prioritized as the causal proteins for GO onset and were not associated with GD.

Conclusion: By synthesizing proteomic and genetic data, we identified several protein biomarkers for GD, with one linked to both GD and GO and two other protein biomarkers specific to GO onset, which provides valuable insights into the etiology and potential therapeutic targets for the two diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
0.00%
发文量
7
审稿时长
16 weeks
期刊介绍: Immuno Targets and Therapy is an international, peer-reviewed open access journal focusing on the immunological basis of diseases, potential targets for immune based therapy and treatment protocols employed to improve patient management. Basic immunology and physiology of the immune system in health, and disease will be also covered.In addition, the journal will focus on the impact of management programs and new therapeutic agents and protocols on patient perspectives such as quality of life, adherence and satisfaction.
期刊最新文献
Conversion of T Effector Cells Into T Regulatory Cells in Type 1 Diabetes/Latent Autoimmune Diabetes of Adults by Inhibiting eIF5A and Notch Pathways. Development and Characterization of 4A7: A High-Affinity Monoclonal Antibody Targeting Claudin18.2. Dissecting Causal Relationship Among Immune Cells, Plasma Metabolites and Coronary Atherosclerosis: A Mendelian Randomization Study. The Effects of M2 Macrophages-Derived Exosomes on Urethral Fibrosis and Stricture in Scar Formation. Increased Risk of Dermatomyositis in Patients with Psoriasis: A Retrospective Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1