Validated space radiation exposure predictions from earth to mars during Artemis-I.

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES npj Microgravity Pub Date : 2025-02-11 DOI:10.1038/s41526-025-00459-y
Tony C Slaba, Shirin Rahmanian, Stuart George, Diego Laramore, John W Norbury, Charles M Werneth, Cary Zeitlin
{"title":"Validated space radiation exposure predictions from earth to mars during Artemis-I.","authors":"Tony C Slaba, Shirin Rahmanian, Stuart George, Diego Laramore, John W Norbury, Charles M Werneth, Cary Zeitlin","doi":"10.1038/s41526-025-00459-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate characterization of space radiation exposure is critical to assess and communicate multiple health risks for crewmembers participating in future exploration missions. A combination of models and on-board instruments are utilized to meet this requirement. In this work, computational models are evaluated against spaceflight measurements taken within the International Space Station, the Orion spacecraft, the BioSentinel CubeSat, and on the Martian surface. All calculations and measurements cover the exact same time period defined by the Artemis-I mission, and all model calculations were performed blind-without prior knowledge of the measurements. The models are shown to accurately characterize the absorbed dose-rate in highly complex and diverse shielding configurations in locations from Earth to Mars.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"6"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00459-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate characterization of space radiation exposure is critical to assess and communicate multiple health risks for crewmembers participating in future exploration missions. A combination of models and on-board instruments are utilized to meet this requirement. In this work, computational models are evaluated against spaceflight measurements taken within the International Space Station, the Orion spacecraft, the BioSentinel CubeSat, and on the Martian surface. All calculations and measurements cover the exact same time period defined by the Artemis-I mission, and all model calculations were performed blind-without prior knowledge of the measurements. The models are shown to accurately characterize the absorbed dose-rate in highly complex and diverse shielding configurations in locations from Earth to Mars.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
期刊最新文献
Validated space radiation exposure predictions from earth to mars during Artemis-I. Lunar and Martian gravity alter immune cell interactions with endothelia in parabolic flight. Simulated deep space exposure on seeds utilizing the MISSE flight facility. Hypergravity is more challenging than microgravity for the human sensorimotor system. Space exploration and risk of Parkinson's disease: a perspective review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1