Ximing Yang, Siyi Wang, Hanxiong Liu, Tuo Zhang, Shuzhen Cheng, Ming Du
{"title":"A dual absorption pathway of novel oyster-derived peptide-zinc complex enhances zinc bioavailability and restores mitochondrial function","authors":"Ximing Yang, Siyi Wang, Hanxiong Liu, Tuo Zhang, Shuzhen Cheng, Ming Du","doi":"10.1016/j.jare.2025.02.005","DOIUrl":null,"url":null,"abstract":"Zinc deficiency is a global health issue that impairs immune function, growth, and energy metabolism. Although conventional zinc supplements have been developed, their effectiveness is limited by poor bioavailability and susceptibility to dietary inhibitors. In this study, a peptide-zinc complex (IE-Zn) derived from oysters was developed to enhance zinc uptake and address metabolic disruptions caused by deficiency. It was determined that Zn<sup>2+</sup> binds with high affinity to the IE peptide, promoting structural flexibility that facilitates zinc transport through both zinc ion transporters and oligopeptide transporters. In Caco-2 and IEC-6 cell models, IE-Zn was shown to significantly improve zinc absorption and retention compared to ZnSO<sub>4</sub>, driven by the upregulation of ZIP4 and PEPT1 transporters. <em>In vivo</em> studies in a zinc-deficient mouse model confirmed enhanced zinc absorption and distribution across serum, intestine, and liver. Moreover, IE-Zn restored energy homeostasis by activating the AMPK/PGC1-α/NRF-1/TFAM signaling pathway, promoting mitochondrial biogenesis and reducing oxidative stress. These findings suggest that IE-Zn is a superior zinc supplement with higher bioavailability and serves as a potent regulator of cellular energy metabolism, offering therapeutic potential for managing conditions related to zinc deficiency and mitochondrial dysfunction. This study lays the foundation for further exploration of peptide-mineral complexes as advanced nutritional supplements with broad applications. Subsequent studies will further investigate the absorption pathway and targeting of peptide-zinc complex. The hope is to provide potential preventive applications for people in need, including zinc deficiency and a range of diseases caused by zinc deficiency.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"21 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.02.005","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc deficiency is a global health issue that impairs immune function, growth, and energy metabolism. Although conventional zinc supplements have been developed, their effectiveness is limited by poor bioavailability and susceptibility to dietary inhibitors. In this study, a peptide-zinc complex (IE-Zn) derived from oysters was developed to enhance zinc uptake and address metabolic disruptions caused by deficiency. It was determined that Zn2+ binds with high affinity to the IE peptide, promoting structural flexibility that facilitates zinc transport through both zinc ion transporters and oligopeptide transporters. In Caco-2 and IEC-6 cell models, IE-Zn was shown to significantly improve zinc absorption and retention compared to ZnSO4, driven by the upregulation of ZIP4 and PEPT1 transporters. In vivo studies in a zinc-deficient mouse model confirmed enhanced zinc absorption and distribution across serum, intestine, and liver. Moreover, IE-Zn restored energy homeostasis by activating the AMPK/PGC1-α/NRF-1/TFAM signaling pathway, promoting mitochondrial biogenesis and reducing oxidative stress. These findings suggest that IE-Zn is a superior zinc supplement with higher bioavailability and serves as a potent regulator of cellular energy metabolism, offering therapeutic potential for managing conditions related to zinc deficiency and mitochondrial dysfunction. This study lays the foundation for further exploration of peptide-mineral complexes as advanced nutritional supplements with broad applications. Subsequent studies will further investigate the absorption pathway and targeting of peptide-zinc complex. The hope is to provide potential preventive applications for people in need, including zinc deficiency and a range of diseases caused by zinc deficiency.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.