Single-Molecule Investigation of Plasmonic Near-Field Effects on a Dissociation Reaction

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-02-13 DOI:10.1021/acs.jpclett.4c03564
Emiko Kazuma, Fajar Prihatno, Jaehoon Jung, Michael Trenary, Yousoo Kim
{"title":"Single-Molecule Investigation of Plasmonic Near-Field Effects on a Dissociation Reaction","authors":"Emiko Kazuma, Fajar Prihatno, Jaehoon Jung, Michael Trenary, Yousoo Kim","doi":"10.1021/acs.jpclett.4c03564","DOIUrl":null,"url":null,"abstract":"Plasmonic near-field effects have attracted more attention as a means of enhancing photoexcitation and photoresponses in materials and devices. Although chemical reactions are one of the important applications, a detailed microscopic understanding of the plasmonic near-field effect in chemical reactions is still lacking. In this study, we reveal that the degree of coupling between the plasmonic electric field and the molecular transition dipole moment governs the reactivity at the single-molecule level. This was demonstrated via single-molecule analysis of the reactivity for dimethyl disulfide weakly chemisorbed on Ag(111) by the combination of experiments using a scanning tunneling microscope (STM) and theoretical calculations. Through precise analysis of the dependence of the reactivity on the angle between the molecular axis and the local plasmonic field, the adsorption configuration dependence of dissociation can be explained by the interaction of the molecules with the plasmonic electric field anisotropically distributed at the nanogap in the STM junction.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"23 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03564","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic near-field effects have attracted more attention as a means of enhancing photoexcitation and photoresponses in materials and devices. Although chemical reactions are one of the important applications, a detailed microscopic understanding of the plasmonic near-field effect in chemical reactions is still lacking. In this study, we reveal that the degree of coupling between the plasmonic electric field and the molecular transition dipole moment governs the reactivity at the single-molecule level. This was demonstrated via single-molecule analysis of the reactivity for dimethyl disulfide weakly chemisorbed on Ag(111) by the combination of experiments using a scanning tunneling microscope (STM) and theoretical calculations. Through precise analysis of the dependence of the reactivity on the angle between the molecular axis and the local plasmonic field, the adsorption configuration dependence of dissociation can be explained by the interaction of the molecules with the plasmonic electric field anisotropically distributed at the nanogap in the STM junction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Magnetic Moment and Spin-State Transitions in Twisted Graphene Nanostructures Manipulation of Metal Halide Perovskite: Photoelectric Conversion or Light Emission? Toward Low Energetic Disorder in Organic Solar Cells: The Critical Role of Polymer Donors Tuning Electrochemical CO2 Reduction through Variation in Composition of the Cu–Pd Bimetallic Catalyst: Experimental and Theoretical Investigations Alleviating O-Intermediates Adsorption Strength over PdRhCu Ternary Metallene via Ligand Effect for Enhanced Oxygen Reduction in Practical PEMFCs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1