Spatial curvature in coincident gauge f(Q) cosmology

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Classical and Quantum Gravity Pub Date : 2025-02-13 DOI:10.1088/1361-6382/adadbf
Erik Jensko
{"title":"Spatial curvature in coincident gauge f(Q) cosmology","authors":"Erik Jensko","doi":"10.1088/1361-6382/adadbf","DOIUrl":null,"url":null,"abstract":"In this work we study the Friedmann–Lemaître–Robertson–Walker cosmologies with arbitrary spatial curvature for the symmetric teleparallel theories of gravity, giving the first presentation of their coincident gauge form. Our approach explicitly starts with the cosmological Killing vectors and constructs the coincident gauge coordinates adapted to these Killing vectors. We then obtain three distinct spatially flat branches and a single spatially curved branch. Contrary to some previous claims, we show that all branches can be studied in this gauge-fixed formalism, which offers certain conceptual advantages. We also identify common flaws that have appeared in the literature regarding the coincident gauge. Using this approach, we find that both the flat and spatially curved solutions in f(Q) gravity can be seen as equivalent to the metric teleparallel f(T) models, demonstrating a deeper connection between these theories. This is accomplished by studying the connection equation of motion, which can be interpreted as a consistency condition in the gauge-fixed approach. Finally, we discuss the role of diffeomorphism invariance and local Lorentz invariance in these geometric modifications of gravity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"16 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adadbf","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the Friedmann–Lemaître–Robertson–Walker cosmologies with arbitrary spatial curvature for the symmetric teleparallel theories of gravity, giving the first presentation of their coincident gauge form. Our approach explicitly starts with the cosmological Killing vectors and constructs the coincident gauge coordinates adapted to these Killing vectors. We then obtain three distinct spatially flat branches and a single spatially curved branch. Contrary to some previous claims, we show that all branches can be studied in this gauge-fixed formalism, which offers certain conceptual advantages. We also identify common flaws that have appeared in the literature regarding the coincident gauge. Using this approach, we find that both the flat and spatially curved solutions in f(Q) gravity can be seen as equivalent to the metric teleparallel f(T) models, demonstrating a deeper connection between these theories. This is accomplished by studying the connection equation of motion, which can be interpreted as a consistency condition in the gauge-fixed approach. Finally, we discuss the role of diffeomorphism invariance and local Lorentz invariance in these geometric modifications of gravity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
期刊最新文献
Evidence for Planck luminosity bound in quantum gravity Theoretical analysis and simulation verification for measuring the geometric distances between the silicon spheres with the laser interferometer in G measurement For a flat Universe, C P /... Revisiting the dynamics of a charged spinning body in curved spacetime Clock synchronization and light-travel-time estimation for space-based gravitational-wave detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1