Persistence selection between simulated biogeochemical cycle variants for their distinct effects on the Earth system

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-02-12 DOI:10.1073/pnas.2406344122
Richard A. Boyle, Edmund R. R. Moody, Gunnar Babcock, Daniel W. McShea, Sandra Álvarez-Carretero, Timothy M. Lenton, Philip C. J. Donoghue
{"title":"Persistence selection between simulated biogeochemical cycle variants for their distinct effects on the Earth system","authors":"Richard A. Boyle, Edmund R. R. Moody, Gunnar Babcock, Daniel W. McShea, Sandra Álvarez-Carretero, Timothy M. Lenton, Philip C. J. Donoghue","doi":"10.1073/pnas.2406344122","DOIUrl":null,"url":null,"abstract":"The average long-term impact of Darwinian evolution on Earth’s habitability remains extremely uncertain. Recent attempts to reconcile this uncertainty by “Darwinizing” nonreplicating biogeochemical processes subject to persistence-based selection conform with the historicity of the geochemical record but lack mechanistic clarity. Here, we present a theoretical framework showing how: 1) A biogeochemical “cycle-biota-variant” (CBV) can be defined non-arbitrarily as one biologically facilitated pathway for net recycling of an essential element, plus the genotypes driving the relevant interconversion reactions. 2) Distinct CBVs can be individuated if they have climatic or geochemical side effects that feed-back on relative persistence. 3) The separation of spatial/temporal scales between the dynamics of such effects and those of conventional Darwinian evolution can introduce a degree of randomness into the relationship between CBVs and their Earth system impact properties, loosely analogous to that between the biochemical causes and evolutionary effects of genetic mutation. 4) Threshold behavior in climate feedback can accentuate biotic impacts and lead to CBV-level “competitive exclusion”. 5) CBV-level persistence selection is observationally distinguishable from genotype-level selection by strong covariance between “internal” CBV properties (genotypes and reactions) and “external” climatic effects, which we argue is analogous to the covariance between fitness and traits under conventional Darwinian selection. These factors cannot circumvent the basic fact that local natural selection will often favor phenotypes that ultimately destabilize large-scale geochemical/climatic properties. However, we claim that our results nevertheless demonstrate the theoretical coherence of persistence-selection between non-replicating life–environment interaction patterns and therefore have broad biogeochemical applicability.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"61 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2406344122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The average long-term impact of Darwinian evolution on Earth’s habitability remains extremely uncertain. Recent attempts to reconcile this uncertainty by “Darwinizing” nonreplicating biogeochemical processes subject to persistence-based selection conform with the historicity of the geochemical record but lack mechanistic clarity. Here, we present a theoretical framework showing how: 1) A biogeochemical “cycle-biota-variant” (CBV) can be defined non-arbitrarily as one biologically facilitated pathway for net recycling of an essential element, plus the genotypes driving the relevant interconversion reactions. 2) Distinct CBVs can be individuated if they have climatic or geochemical side effects that feed-back on relative persistence. 3) The separation of spatial/temporal scales between the dynamics of such effects and those of conventional Darwinian evolution can introduce a degree of randomness into the relationship between CBVs and their Earth system impact properties, loosely analogous to that between the biochemical causes and evolutionary effects of genetic mutation. 4) Threshold behavior in climate feedback can accentuate biotic impacts and lead to CBV-level “competitive exclusion”. 5) CBV-level persistence selection is observationally distinguishable from genotype-level selection by strong covariance between “internal” CBV properties (genotypes and reactions) and “external” climatic effects, which we argue is analogous to the covariance between fitness and traits under conventional Darwinian selection. These factors cannot circumvent the basic fact that local natural selection will often favor phenotypes that ultimately destabilize large-scale geochemical/climatic properties. However, we claim that our results nevertheless demonstrate the theoretical coherence of persistence-selection between non-replicating life–environment interaction patterns and therefore have broad biogeochemical applicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Jenewein et al., Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere. Correction for Ahituv et al., Starch-rich plant foods 780,000 y ago: Evidence from Acheulian percussive stone tools. Correction for Atlas et al., Turbulence in the tropical stratosphere, equatorial Kelvin waves, and the quasi-biennial oscillation. Correction for Schmidt et al., Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Correction for Wu et al., Hapalindole Q suppresses autophagosome-lysosome fusion by promoting YAP1 degradation via chaperon-mediated autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1