Downscaling mutualistic networks from species to individuals reveals consistent interaction niches and roles within plant populations

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-02-12 DOI:10.1073/pnas.2402342122
Elena Quintero, Blanca Arroyo-Correa, Jorge Isla, Francisco Rodríguez-Sánchez, Pedro Jordano
{"title":"Downscaling mutualistic networks from species to individuals reveals consistent interaction niches and roles within plant populations","authors":"Elena Quintero, Blanca Arroyo-Correa, Jorge Isla, Francisco Rodríguez-Sánchez, Pedro Jordano","doi":"10.1073/pnas.2402342122","DOIUrl":null,"url":null,"abstract":"Species-level networks emerge as the combination of interactions spanning multiple individuals, and their study has received considerable attention over the past 30 y. However, less is known about the structure of interaction configurations within species, even though individuals are the actual interacting units in nature. We compiled 46 empirical, individual-based, interaction networks on plant-animal seed dispersal mutualisms, comprising 1,037 plant individuals across 29 species from various regions. We compared the structure of individual-based networks to that of species-based networks and, by extending the niche concept to interaction assemblages, we explored individual plant specialization. Using a Bayesian framework to account for uncertainty derived from sampling, we examined how plant individuals “explore” the interaction niche of their populations. Both individual-based and species-based networks exhibited high variability in network properties, lacking remarkable structural and topological differences between them. Within populations, frugivores’ interaction allocation among plant individuals was highly heterogeneous, with one to three frugivore species dominating interactions. Regardless of species or bioregion, plant individuals displayed a variety of interaction profiles across populations, with a consistently-small percentage of individuals playing a central role and exhibiting high diversity in their interaction assemblage. Plant populations showed variable mid to low levels of niche specialization; and individuals’ interaction niche “breadth” accounted for 70% of the population interaction diversity, on average. Our results highlight how downscaling from species to individual-based networks helps understanding the structuring of interactions within ecological communities and provide an empirical basis for the extension of niche theory to complex mutualistic networks.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"78 3 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2402342122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Species-level networks emerge as the combination of interactions spanning multiple individuals, and their study has received considerable attention over the past 30 y. However, less is known about the structure of interaction configurations within species, even though individuals are the actual interacting units in nature. We compiled 46 empirical, individual-based, interaction networks on plant-animal seed dispersal mutualisms, comprising 1,037 plant individuals across 29 species from various regions. We compared the structure of individual-based networks to that of species-based networks and, by extending the niche concept to interaction assemblages, we explored individual plant specialization. Using a Bayesian framework to account for uncertainty derived from sampling, we examined how plant individuals “explore” the interaction niche of their populations. Both individual-based and species-based networks exhibited high variability in network properties, lacking remarkable structural and topological differences between them. Within populations, frugivores’ interaction allocation among plant individuals was highly heterogeneous, with one to three frugivore species dominating interactions. Regardless of species or bioregion, plant individuals displayed a variety of interaction profiles across populations, with a consistently-small percentage of individuals playing a central role and exhibiting high diversity in their interaction assemblage. Plant populations showed variable mid to low levels of niche specialization; and individuals’ interaction niche “breadth” accounted for 70% of the population interaction diversity, on average. Our results highlight how downscaling from species to individual-based networks helps understanding the structuring of interactions within ecological communities and provide an empirical basis for the extension of niche theory to complex mutualistic networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Jenewein et al., Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere. Correction for Ahituv et al., Starch-rich plant foods 780,000 y ago: Evidence from Acheulian percussive stone tools. Correction for Atlas et al., Turbulence in the tropical stratosphere, equatorial Kelvin waves, and the quasi-biennial oscillation. Correction for Schmidt et al., Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Correction for Wu et al., Hapalindole Q suppresses autophagosome-lysosome fusion by promoting YAP1 degradation via chaperon-mediated autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1