Lanjing Ma, Zhongqiu Pang, Haijiao Zhang, Xueling Yang, Shaoqin Zheng, Yi Chen, Weijie Ding, Qing Han, Xi Zhang, Liu Cao, Teng Fei, Qiang Wang, Daming Gao, Aina He, Ke-Bang Hu, Xuexin Li, Ren Sheng
{"title":"Clear cell renal carcinoma essentially requires CDKL3 for oncogenesis","authors":"Lanjing Ma, Zhongqiu Pang, Haijiao Zhang, Xueling Yang, Shaoqin Zheng, Yi Chen, Weijie Ding, Qing Han, Xi Zhang, Liu Cao, Teng Fei, Qiang Wang, Daming Gao, Aina He, Ke-Bang Hu, Xuexin Li, Ren Sheng","doi":"10.1073/pnas.2415244122","DOIUrl":null,"url":null,"abstract":"Clear cell renal cell carcinoma (ccRCC) is the predominant human renal cancer with surging incidence and fatality lately. Hyperactivation of hypoxia-inducible factor (HIF) and mammalian target of rapamycin (mTOR) signaling are the common signatures in ccRCC. Herein, we employed spontaneous ccRCC model to demonstrate the indispensability of an underappreciated Ser/Thr kinase, CDKL3, in the initiation and progression of ccRCC. Ablation of CDKL3 does not affect normal kidney, but abrogates Akt-mTOR hyperactivity and thoroughly prevents the formation and growth of the HIF-agitated ccRCC in vivo. Remarkable clinical correlations also supported the oncogenic role of CDKL3. Mechanism-wise, cytosolic CDKL3 unexpectedly behaves as the adaptor to physically potentiate mTORC2-dependent Akt activation without functioning through kinase activity. And mTORC2 can phosphorylate and stabilize CDKL3 to form a positive feedback loop to sustain the cancer-favored Akt-mTOR overactivation. Together, we revealed the pathological importance and molecular mechanism of CDKL3-mediated Akt-mTOR axis in ccRCC initiation and progression.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"61 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2415244122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant human renal cancer with surging incidence and fatality lately. Hyperactivation of hypoxia-inducible factor (HIF) and mammalian target of rapamycin (mTOR) signaling are the common signatures in ccRCC. Herein, we employed spontaneous ccRCC model to demonstrate the indispensability of an underappreciated Ser/Thr kinase, CDKL3, in the initiation and progression of ccRCC. Ablation of CDKL3 does not affect normal kidney, but abrogates Akt-mTOR hyperactivity and thoroughly prevents the formation and growth of the HIF-agitated ccRCC in vivo. Remarkable clinical correlations also supported the oncogenic role of CDKL3. Mechanism-wise, cytosolic CDKL3 unexpectedly behaves as the adaptor to physically potentiate mTORC2-dependent Akt activation without functioning through kinase activity. And mTORC2 can phosphorylate and stabilize CDKL3 to form a positive feedback loop to sustain the cancer-favored Akt-mTOR overactivation. Together, we revealed the pathological importance and molecular mechanism of CDKL3-mediated Akt-mTOR axis in ccRCC initiation and progression.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.