Gengnan Li, Adyasa Priyadarsini, Zhenhua Xie, Sinwoo Kang, Yuzi Liu, Xiaobo Chen, Shyam Kattel, Jingguang G. Chen
{"title":"Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrOx over Co3O4","authors":"Gengnan Li, Adyasa Priyadarsini, Zhenhua Xie, Sinwoo Kang, Yuzi Liu, Xiaobo Chen, Shyam Kattel, Jingguang G. Chen","doi":"10.1021/jacs.4c17915","DOIUrl":null,"url":null,"abstract":"The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrO<sub><i>x</i></sub>) has been uniformly dispersed onto cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrO<sub><i>x</i></sub> cluster, the atomically thin layer of IrO<sub><i>x</i></sub> shows stronger interaction with the Co<sub>3</sub>O<sub>4</sub> and consequently higher OER activity due to the Ir–O–Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm<sup>–2</sup> at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"40 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17915","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrOx) has been uniformly dispersed onto cobalt oxide (Co3O4) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrOx cluster, the atomically thin layer of IrOx shows stronger interaction with the Co3O4 and consequently higher OER activity due to the Ir–O–Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm–2 at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.