3D g-C3N4/WS2/Agarose Aerogel Photocatalyst for Near-Complete Degradation of Broad-Spectrum Antibiotics in Batch and Continuous Flow Modes

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL ACS ES&T engineering Pub Date : 2024-10-29 DOI:10.1021/acsestengg.4c0057910.1021/acsestengg.4c00579
Mario Vino Lincy Gnanaguru, Debanjali Dey, Makarand M. Ghangrekar, Ramkrishna Sen and Shamik Chowdhury*, 
{"title":"3D g-C3N4/WS2/Agarose Aerogel Photocatalyst for Near-Complete Degradation of Broad-Spectrum Antibiotics in Batch and Continuous Flow Modes","authors":"Mario Vino Lincy Gnanaguru,&nbsp;Debanjali Dey,&nbsp;Makarand M. Ghangrekar,&nbsp;Ramkrishna Sen and Shamik Chowdhury*,&nbsp;","doi":"10.1021/acsestengg.4c0057910.1021/acsestengg.4c00579","DOIUrl":null,"url":null,"abstract":"<p >Heterojunction-based photocatalysts are receiving tremendous scientific attention for eliminating consumer-derived micropollutants from aqueous environments. However, the inherent difficulty in recovering photocatalysts following treatment, due to their application in powder form, precludes their widespread use. Herein, a self-supporting and lightweight three-dimensional (3D) graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>)/tungsten disulfide (WS<sub>2</sub>)/agarose aerogel (GCWAA) was constructed via a facile and scalable radial freeze-casting approach. The as-synthesized 3D GCWAA proved extremely promising for the photocatalytic removal of three broad-spectrum antibiotic pollutants (ABPs), viz., tetracycline (94%), sulfamethoxazole (97%), and ofloxacin (96%), within 90 min of visible light irradiation in the batch regime. The enhanced photocatalytic performance of 3D GCWAA can be attributed to a Z-scheme electron flow from g-C<sub>3</sub>N<sub>4</sub> to WS<sub>2</sub> in the aerogel, as inferred from electronic band structure characterization. To further demonstrate the practical utility of the composite aerogel in water and wastewater treatment systems, the continuous flow photocatalysis of ABPs over 3D GCWAA was systematically studied. Specifically, the influence of several noteworthy operational parameters, such as flow rate, solution pH, and the presence of interfering ions was comprehensively investigated. Interestingly, under optimized conditions, GCWAA achieved a remarkable average removal efficiency of 95% for ABPs in continuous mode, with minimal loss of activity over time. More attractively, GCWAA exhibited decent photocatalytic performance for treating a ternary mixture of ABPs in both freshwaters and wastewaters in the continuous flow reactor. The results of this study showcase the ultimate lab-scale demonstration of the photocatalytic potential of 3D GCWAA for the degradation of emerging contaminants, paving the way for future scale-up.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"515–530 515–530"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heterojunction-based photocatalysts are receiving tremendous scientific attention for eliminating consumer-derived micropollutants from aqueous environments. However, the inherent difficulty in recovering photocatalysts following treatment, due to their application in powder form, precludes their widespread use. Herein, a self-supporting and lightweight three-dimensional (3D) graphitic carbon nitride (g-C3N4)/tungsten disulfide (WS2)/agarose aerogel (GCWAA) was constructed via a facile and scalable radial freeze-casting approach. The as-synthesized 3D GCWAA proved extremely promising for the photocatalytic removal of three broad-spectrum antibiotic pollutants (ABPs), viz., tetracycline (94%), sulfamethoxazole (97%), and ofloxacin (96%), within 90 min of visible light irradiation in the batch regime. The enhanced photocatalytic performance of 3D GCWAA can be attributed to a Z-scheme electron flow from g-C3N4 to WS2 in the aerogel, as inferred from electronic band structure characterization. To further demonstrate the practical utility of the composite aerogel in water and wastewater treatment systems, the continuous flow photocatalysis of ABPs over 3D GCWAA was systematically studied. Specifically, the influence of several noteworthy operational parameters, such as flow rate, solution pH, and the presence of interfering ions was comprehensively investigated. Interestingly, under optimized conditions, GCWAA achieved a remarkable average removal efficiency of 95% for ABPs in continuous mode, with minimal loss of activity over time. More attractively, GCWAA exhibited decent photocatalytic performance for treating a ternary mixture of ABPs in both freshwaters and wastewaters in the continuous flow reactor. The results of this study showcase the ultimate lab-scale demonstration of the photocatalytic potential of 3D GCWAA for the degradation of emerging contaminants, paving the way for future scale-up.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Broad Influence of Quorum Sensing in Environmental Biotechnology: From Mechanisms to Applications Innovative Catalysis Approaches for Methane Utilization Cooking Oil Fumes: A Comprehensive Review of Emission Characteristics and Catalytic Oxidation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1