{"title":"Pore coalescence as an inherent problem in the sintering of zirconia nanoparticles","authors":"Martin Trunec , Premysl Stastny , Eliska Siska Viragova , Dinara Sobola","doi":"10.1016/j.jeurceramsoc.2025.117272","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the densification behaviour of zirconia nanoparticle compacts sintered at high temperatures. It was shown that zirconia nanoparticle compacts exhibited pore growth and related density decrease after sintering at temperatures above 1100 °C. Extensive analytical testing was performed to elucidate this behaviour. The de-densification effect was explained as pore coalescence and swelling. Intensive grain growth at high sintering temperatures induced coalescence of residual pores that remained in the dense structure. The overpressure of a non-diffusing gas entrapped in coalesced pores resulted in their expansion and ceramics swelling. The ceramics swelling was modelled and compared with experimental data. This de-densification behaviour seems to be inherent to all nanozirconia compacts accompanied by large grain coarsening in a dense structure.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 8","pages":"Article 117272"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925000925","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the densification behaviour of zirconia nanoparticle compacts sintered at high temperatures. It was shown that zirconia nanoparticle compacts exhibited pore growth and related density decrease after sintering at temperatures above 1100 °C. Extensive analytical testing was performed to elucidate this behaviour. The de-densification effect was explained as pore coalescence and swelling. Intensive grain growth at high sintering temperatures induced coalescence of residual pores that remained in the dense structure. The overpressure of a non-diffusing gas entrapped in coalesced pores resulted in their expansion and ceramics swelling. The ceramics swelling was modelled and compared with experimental data. This de-densification behaviour seems to be inherent to all nanozirconia compacts accompanied by large grain coarsening in a dense structure.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.