{"title":"Two-stage stacked autoencoder monitoring model based on deep slow feature representation for dynamic processes","authors":"Qing Li, Jiaqi Wan, Xu Yang, Jian Huang, Jiarui Cui, Qun Yan","doi":"10.1016/j.jprocont.2025.103389","DOIUrl":null,"url":null,"abstract":"<div><div>The slow feature analysis (SFA) method constitutes a robust technique for dynamic process monitoring, capable of extracting slow-varying features to reveal process dynamics. A significant challenge in SFA-based monitoring involves nonlinear relationships within process data. Therefore, this paper introduces a slow feature constraint two-stage stacked autoencoder algorithm for dynamic process analysis. In the first stage, AE units aim to produce decorrelated and normalized signals through nonlinear expansion, with loss term focusing on the related properties. In the second stage, AE units serve to explore deep slow feature representations under constraints on variations of features. By fusing principles of SFA with the representational depth of SAE, the algorithm not only captures nonlinear relationships but also preserves crucial temporal dependencies within data, thereby providing more accurate insights for process monitoring. The proposed algorithm is validated in the vinyl acetate monomer process.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"147 ","pages":"Article 103389"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000174","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The slow feature analysis (SFA) method constitutes a robust technique for dynamic process monitoring, capable of extracting slow-varying features to reveal process dynamics. A significant challenge in SFA-based monitoring involves nonlinear relationships within process data. Therefore, this paper introduces a slow feature constraint two-stage stacked autoencoder algorithm for dynamic process analysis. In the first stage, AE units aim to produce decorrelated and normalized signals through nonlinear expansion, with loss term focusing on the related properties. In the second stage, AE units serve to explore deep slow feature representations under constraints on variations of features. By fusing principles of SFA with the representational depth of SAE, the algorithm not only captures nonlinear relationships but also preserves crucial temporal dependencies within data, thereby providing more accurate insights for process monitoring. The proposed algorithm is validated in the vinyl acetate monomer process.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.