A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-12-09 DOI:10.1039/D4YA00446A
Muhammad Rehman Asghar, Weiqi Zhang, Huaneng Su, Junliang Zhang, Huiyuan Liu, Lei Xing, Xiaohui Yan and Qian Xu
{"title":"A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells†","authors":"Muhammad Rehman Asghar, Weiqi Zhang, Huaneng Su, Junliang Zhang, Huiyuan Liu, Lei Xing, Xiaohui Yan and Qian Xu","doi":"10.1039/D4YA00446A","DOIUrl":null,"url":null,"abstract":"<p >This review gives an overview of the application of inorganic nanoparticles in the proton exchange membrane (PEM) of direct methanol fuel cells (DMFCs). The effects of the polymer membrane's physical and chemical characteristics after adding nanoparticles are covered. The article also covers how composite membranes can replace expensive, high-methanol-permeable, low chemically stable, and poor-conductive Nafion membranes at high temperatures. The different types of nanomaterials including solid, hollow, one-dimensional-(1D), two-dimensional-(2D) and three-dimensional-(3D) nanomaterials including clay-based composite membranes are discussed. Along with different types of nanoparticle composite membranes, different methods of making membranes such as dip coating, composite membranes and non-woven mats are also included in the article. The research shows that direct inclusion of the nanoparticles in the polymer as well as solution gel techniques require a precise ratio of the polymer and particles, blending time and a controlled drying temperature. The strong interactions of inorganic nanoparticles with polymers not only tune the pore structure of the proton exchange membrane for promoting Grotthuss and vehicular mechanisms but also create a link to hydrophilic functional groups that promote the further refining of these nanoparticles. The tortuous and non-swelled paths created with the inclusion of nanoparticles in the membrane minimize the methanol permeability while maintaining high proton conductivity. This paper also discusses the advancements in inorganic nanoparticle-modified membranes, their application and future improvements for their better application in the membrane of DMFCs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 185-223"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00446a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00446a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review gives an overview of the application of inorganic nanoparticles in the proton exchange membrane (PEM) of direct methanol fuel cells (DMFCs). The effects of the polymer membrane's physical and chemical characteristics after adding nanoparticles are covered. The article also covers how composite membranes can replace expensive, high-methanol-permeable, low chemically stable, and poor-conductive Nafion membranes at high temperatures. The different types of nanomaterials including solid, hollow, one-dimensional-(1D), two-dimensional-(2D) and three-dimensional-(3D) nanomaterials including clay-based composite membranes are discussed. Along with different types of nanoparticle composite membranes, different methods of making membranes such as dip coating, composite membranes and non-woven mats are also included in the article. The research shows that direct inclusion of the nanoparticles in the polymer as well as solution gel techniques require a precise ratio of the polymer and particles, blending time and a controlled drying temperature. The strong interactions of inorganic nanoparticles with polymers not only tune the pore structure of the proton exchange membrane for promoting Grotthuss and vehicular mechanisms but also create a link to hydrophilic functional groups that promote the further refining of these nanoparticles. The tortuous and non-swelled paths created with the inclusion of nanoparticles in the membrane minimize the methanol permeability while maintaining high proton conductivity. This paper also discusses the advancements in inorganic nanoparticle-modified membranes, their application and future improvements for their better application in the membrane of DMFCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of precursor dosing on the surface passivation of AZO/AlO x stacks formed using atomic layer deposition. Back cover Reflecting on another successful year of Energy Advances Graphite particles modified by ZnO atomic layer deposition for Li-ion battery anodes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1