Exploring the spectrum: an environmental examination of hydrogen's diverse colors

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-12-17 DOI:10.1039/D4YA00570H
Hafsa Mehmood, Haseeb Akbar, Pariyapat Nilsalab and Shabbir H. Gheewala
{"title":"Exploring the spectrum: an environmental examination of hydrogen's diverse colors","authors":"Hafsa Mehmood, Haseeb Akbar, Pariyapat Nilsalab and Shabbir H. Gheewala","doi":"10.1039/D4YA00570H","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen is emerging as an immense source of energy having the potential to at least partly replace fossil fuels. It is an abundant element on earth, but does not mainly exist in free form. Hydrogen can be produced through different technologies and feedstocks, and based on these, it can be categorized into colors with different environmental impacts. This work aimed to review the environmental impacts of the production of gray (from natural gas without carbon capture and storage), brown (from coal gasification), blue (from fossil fuels with carbon capture and storage), green (from renewable energy or biological process), and turquoise (pyrolysis of natural gas) hydrogen and to identify sustainable hydrogen production pathways that minimize environmental impacts. Global warming, acidification, eutrophication, and resource depletion were considered as indicators to assess the environmental impacts. The results showed that brown hydrogen produced <em>via</em> coal gasification had the highest global warming, acidification, and resource depletion impacts among all the options considered. On the other hand, green hydrogen from electrolysis through wind energy had the lowest environmental impacts. However, adopting these hydrogen colors presents different challenges and opportunities. Success depends on effective policy frameworks, international cooperation, and technological readiness to ensure positive contributions to global sustainability goals.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 224-238"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00570h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00570h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is emerging as an immense source of energy having the potential to at least partly replace fossil fuels. It is an abundant element on earth, but does not mainly exist in free form. Hydrogen can be produced through different technologies and feedstocks, and based on these, it can be categorized into colors with different environmental impacts. This work aimed to review the environmental impacts of the production of gray (from natural gas without carbon capture and storage), brown (from coal gasification), blue (from fossil fuels with carbon capture and storage), green (from renewable energy or biological process), and turquoise (pyrolysis of natural gas) hydrogen and to identify sustainable hydrogen production pathways that minimize environmental impacts. Global warming, acidification, eutrophication, and resource depletion were considered as indicators to assess the environmental impacts. The results showed that brown hydrogen produced via coal gasification had the highest global warming, acidification, and resource depletion impacts among all the options considered. On the other hand, green hydrogen from electrolysis through wind energy had the lowest environmental impacts. However, adopting these hydrogen colors presents different challenges and opportunities. Success depends on effective policy frameworks, international cooperation, and technological readiness to ensure positive contributions to global sustainability goals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of precursor dosing on the surface passivation of AZO/AlO x stacks formed using atomic layer deposition. Back cover Reflecting on another successful year of Energy Advances Graphite particles modified by ZnO atomic layer deposition for Li-ion battery anodes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1