Solid bromine complexing agents: long-term solution for corrosive conditions in redox-flow battery†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-12-12 DOI:10.1039/D4YA00367E
Kobby Saadi, Raphael Flack, Valery Bourbo, Ran Elazari and David Zitoun
{"title":"Solid bromine complexing agents: long-term solution for corrosive conditions in redox-flow battery†","authors":"Kobby Saadi, Raphael Flack, Valery Bourbo, Ran Elazari and David Zitoun","doi":"10.1039/D4YA00367E","DOIUrl":null,"url":null,"abstract":"<p >Redox flow batteries (RFBs) fulfill the requirements for long-duration energy storage (LDES), and the use of bromine as a catholyte has garnered substantial interest due to its high availability and low cost. However, at high states of charge, the vapor pressure of bromine presents significant safety concerns within the catholyte tank, while polybromide species have been shown to corrode the metals present in the stack. Traditionally, soluble bromine complexing agents (BCAs) have been employed to mitigate the concentration of free bromine, providing some improvement in safety; however, this has often resulted in significant reductions in power density and durability. In this study, we present the development of a solid BCA incorporated into the catholyte tank of a hydrogen-bromine RFB (HBRFB). The long-term separation of the bromine-rich solid phase from the flowing liquid phases enables sustained high performance for over 250 cycles. The effective complexing-dissociating equilibrium within the electrolyte tank ensures adequate bromine concentration for operation at high current densities. This advancement significantly enhances the viability of bromine-based RFB technology as a dependable solution for long-duration energy storage.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 273-280"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00367e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00367e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Redox flow batteries (RFBs) fulfill the requirements for long-duration energy storage (LDES), and the use of bromine as a catholyte has garnered substantial interest due to its high availability and low cost. However, at high states of charge, the vapor pressure of bromine presents significant safety concerns within the catholyte tank, while polybromide species have been shown to corrode the metals present in the stack. Traditionally, soluble bromine complexing agents (BCAs) have been employed to mitigate the concentration of free bromine, providing some improvement in safety; however, this has often resulted in significant reductions in power density and durability. In this study, we present the development of a solid BCA incorporated into the catholyte tank of a hydrogen-bromine RFB (HBRFB). The long-term separation of the bromine-rich solid phase from the flowing liquid phases enables sustained high performance for over 250 cycles. The effective complexing-dissociating equilibrium within the electrolyte tank ensures adequate bromine concentration for operation at high current densities. This advancement significantly enhances the viability of bromine-based RFB technology as a dependable solution for long-duration energy storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of precursor dosing on the surface passivation of AZO/AlO x stacks formed using atomic layer deposition. Back cover Reflecting on another successful year of Energy Advances Graphite particles modified by ZnO atomic layer deposition for Li-ion battery anodes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1