MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2025-02-14 DOI:10.1007/s00253-025-13421-5
Phuong Lan Tran, Minjee Yoo, Sung-Gun Kim, Jong-Tae Park
{"title":"MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities","authors":"Phuong Lan Tran,&nbsp;Minjee Yoo,&nbsp;Sung-Gun Kim,&nbsp;Jong-Tae Park","doi":"10.1007/s00253-025-13421-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigated MalS, a periplasmic α-enzyme from <i>Escherichia coli</i> K12, known for its unique biochemical properties related to polysaccharide utilization. Evolutionarily, MalS has inherited the glycosyl hydrolase catalytic domain from the glycoside hydrolase family 13, with the protein sequences highly conserved across <i>Enterobacteria</i>, including <i>Salmonella</i> and <i>Shigella</i>. MalS exhibited optimal activity at 65 °C, significantly higher than other <i>E. coli</i> enzymes. Although its reaction pattern resembled that of typical α-amylases, its catalytic efficiency on polysaccharides was notably lower. Intriguingly, MalS demonstrated a strong binding affinity for various glucose polymers, including β-cyclodextrin and glycogen, which significantly enhanced its thermostability. Despite full-length MalS binding strongly to glycogen, neither its N-terminal domain, predicted by AlphaFold2 to belong to the Carbohydrate-Binding Module family 69, nor the remaining parts of the enzyme showed binding affinity toward polysaccharides. Kinetic studies revealed that MalS had a 2.5-fold lower <i>K</i><sub>m</sub> and 1.4-fold higher catalytic efficiency toward glycogen compared to amylopectin, which contrasts starkly with pancreatic α-amylases. However, over prolonged reactions, glycogen hydrolysis by MalS was slower than that of amylopectin. In the early initial stage, MalS predominantly degraded glycogen to maltopentaose (G5) rather than maltohexaose (G6) as usual. Taken together, these findings suggest MalS may play a role in recognizing glycogen-type polysaccharides in the bacterial periplasm during adaptation to new environments. Given the crucial role of glycogen in the survival and infection processes of pathogenic bacteria, understanding MalS’s interaction with glycogen-type polysaccharides could offer valuable insights into bacterial survival mechanisms and their ability to infect hosts.</p><p>• <i>MalS has unique structure and properties but conserved among many enterobacteria</i></p><p>• <i>Binding of MalS with polysaccharides significantly enhanced its thermostability</i></p><p>• <i>Unlike other amylases, MalS showed 2.5-fold lower K</i><sub><i>m</i></sub><i> on glycogen than amylopectin</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13421-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13421-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated MalS, a periplasmic α-enzyme from Escherichia coli K12, known for its unique biochemical properties related to polysaccharide utilization. Evolutionarily, MalS has inherited the glycosyl hydrolase catalytic domain from the glycoside hydrolase family 13, with the protein sequences highly conserved across Enterobacteria, including Salmonella and Shigella. MalS exhibited optimal activity at 65 °C, significantly higher than other E. coli enzymes. Although its reaction pattern resembled that of typical α-amylases, its catalytic efficiency on polysaccharides was notably lower. Intriguingly, MalS demonstrated a strong binding affinity for various glucose polymers, including β-cyclodextrin and glycogen, which significantly enhanced its thermostability. Despite full-length MalS binding strongly to glycogen, neither its N-terminal domain, predicted by AlphaFold2 to belong to the Carbohydrate-Binding Module family 69, nor the remaining parts of the enzyme showed binding affinity toward polysaccharides. Kinetic studies revealed that MalS had a 2.5-fold lower Km and 1.4-fold higher catalytic efficiency toward glycogen compared to amylopectin, which contrasts starkly with pancreatic α-amylases. However, over prolonged reactions, glycogen hydrolysis by MalS was slower than that of amylopectin. In the early initial stage, MalS predominantly degraded glycogen to maltopentaose (G5) rather than maltohexaose (G6) as usual. Taken together, these findings suggest MalS may play a role in recognizing glycogen-type polysaccharides in the bacterial periplasm during adaptation to new environments. Given the crucial role of glycogen in the survival and infection processes of pathogenic bacteria, understanding MalS’s interaction with glycogen-type polysaccharides could offer valuable insights into bacterial survival mechanisms and their ability to infect hosts.

MalS has unique structure and properties but conserved among many enterobacteria

Binding of MalS with polysaccharides significantly enhanced its thermostability

Unlike other amylases, MalS showed 2.5-fold lower Km on glycogen than amylopectin

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Quantification of intracellular influenza A virus protein dynamics in different host cells after seed virus adaptation Enhancement of exogenous protein stability in AcMNPV by overexpressing lef5 gene during passaging A novel two-step purification process for highly stable C-phycocyanin of analytical grade purity and its properties Dual one-step recombinase-aided PCR for rapid detection of Candida in blood CUsKit: a test to revolutionise the evaluation of the disinfection process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1