T. Rygier, S. Jończyk, J. Szawłowski, P. Bilski, W. Goluch
{"title":"Assessment of the possibility of increasing the carburizing temperature of PYROWEAR 53 steel","authors":"T. Rygier, S. Jończyk, J. Szawłowski, P. Bilski, W. Goluch","doi":"10.1007/s43452-025-01139-0","DOIUrl":null,"url":null,"abstract":"<div><p>PYROWEAR 53 steel is a special carburizing steel used mainly for the production of machine parts for the aviation industry. Machine parts are surface-strengthened in the carburizing process and subsequent heat treatment (hardening, freezing, and low tempering). The carburizing temperature recommended and used in industrial practice is 921 °C. After saturating the surface layer with carbon, it is recommended to reheat for hardening and cooling in oil. This work assessed the possibility of increasing the carburizing temperature and hardening the layer immediately after saturating the surface layer with carbon, after cooling to the recommended hardening temperature of 913 °C. The carburizing process was carried out using the LPC (low-pressure carburizing) FineCarb technology. The condition for increasing the carburizing temperature was to maintain the required grain size of the prior austenite—G6. This study examined the tendency to grow the austenite grain and determined the highest austenitization temperature ensuring the required grain—G6. At this temperature, the carburizing process then heat treatment were carried out in accordance with the requirements of manufacturers of machine parts for the aviation industry. The microstructure of the layer, its phase composition, the content of retained austenite, the value of residual stresses and surface hardness, and its changes at depth were determined.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01139-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
PYROWEAR 53 steel is a special carburizing steel used mainly for the production of machine parts for the aviation industry. Machine parts are surface-strengthened in the carburizing process and subsequent heat treatment (hardening, freezing, and low tempering). The carburizing temperature recommended and used in industrial practice is 921 °C. After saturating the surface layer with carbon, it is recommended to reheat for hardening and cooling in oil. This work assessed the possibility of increasing the carburizing temperature and hardening the layer immediately after saturating the surface layer with carbon, after cooling to the recommended hardening temperature of 913 °C. The carburizing process was carried out using the LPC (low-pressure carburizing) FineCarb technology. The condition for increasing the carburizing temperature was to maintain the required grain size of the prior austenite—G6. This study examined the tendency to grow the austenite grain and determined the highest austenitization temperature ensuring the required grain—G6. At this temperature, the carburizing process then heat treatment were carried out in accordance with the requirements of manufacturers of machine parts for the aviation industry. The microstructure of the layer, its phase composition, the content of retained austenite, the value of residual stresses and surface hardness, and its changes at depth were determined.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.