Nitrogen Source Preferences and Ecological Implications of Phytoplankton Primary Production in the Yellow Sea, South Sea of Korea, and East/Japan Sea, 2018
Hyo Keun Jang, Jae Joong Kang, Dabin Lee, Kwanwoo Kim, Myung Joon Kim, Sanghoon Park, Yejin Kim, Jaesoon Kim, Huitae Joo, Seok-Hyun Youn, Sang Heon Lee
{"title":"Nitrogen Source Preferences and Ecological Implications of Phytoplankton Primary Production in the Yellow Sea, South Sea of Korea, and East/Japan Sea, 2018","authors":"Hyo Keun Jang, Jae Joong Kang, Dabin Lee, Kwanwoo Kim, Myung Joon Kim, Sanghoon Park, Yejin Kim, Jaesoon Kim, Huitae Joo, Seok-Hyun Youn, Sang Heon Lee","doi":"10.1029/2024JG008061","DOIUrl":null,"url":null,"abstract":"<p>Understanding the partitioning of primary production into new and regenerated productions, based on nitrate or ammonium utilization, is crucial to understanding biogeochemical processes and marine ecosystems. This study addresses the scarcity of information on new and regenerated productions in the Yellow Sea (YS), South Sea (SS), and East/Japan Sea (EJS). Employing the <sup>13</sup>C–<sup>15</sup>N tracer method, we quantified carbon and nitrogen uptake rates of phytoplankton across four seasons in 2018. Seasonal nitrate and ammonium uptake rates exhibited distinct ranges in the YS (0.2–6.1 and 0.4–22.3 mg N m<sup>−2</sup> hr<sup>−1</sup>), SS (1.0–15.6 and 4.5–15.4 mg N m<sup>−2</sup> hr<sup>−1</sup>), and EJS (1.5–7.3 and 4.5–15.4 mg N m<sup>−2</sup> hr<sup>−1</sup>). Notably, nitrate uptake rates in the YS (except spring), SS, and EJS were generally lower than ammonium uptake rates, attributed to the dominance of pico-sized (<2 μm) phytoplankton with a high affinity for ammonium. Carbon uptake rates in all seas displayed significant positive correlations with nitrate uptakes rather than ammonium uptakes, suggesting that the prevailing ammonium assimilations by dominant pico-sized phytoplankton contributed to the lower primary productions in 2018. Estimated annual new productions (30, 24, and 43 g C m<sup>−2</sup> y<sup>−1</sup>) in the YS, SS, and EJS fall within the reported ranges for other regions. However, the EJS exhibited lower productions than previous reports (146 g C m<sup>−2</sup> y<sup>−1</sup>), potentially impacting fishery yields and export production to the deep ocean in 2018. These findings, in the context of rapid environmental changes, provide crucial baseline information for monitoring future marine ecosystems in Korean seas.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008061","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the partitioning of primary production into new and regenerated productions, based on nitrate or ammonium utilization, is crucial to understanding biogeochemical processes and marine ecosystems. This study addresses the scarcity of information on new and regenerated productions in the Yellow Sea (YS), South Sea (SS), and East/Japan Sea (EJS). Employing the 13C–15N tracer method, we quantified carbon and nitrogen uptake rates of phytoplankton across four seasons in 2018. Seasonal nitrate and ammonium uptake rates exhibited distinct ranges in the YS (0.2–6.1 and 0.4–22.3 mg N m−2 hr−1), SS (1.0–15.6 and 4.5–15.4 mg N m−2 hr−1), and EJS (1.5–7.3 and 4.5–15.4 mg N m−2 hr−1). Notably, nitrate uptake rates in the YS (except spring), SS, and EJS were generally lower than ammonium uptake rates, attributed to the dominance of pico-sized (<2 μm) phytoplankton with a high affinity for ammonium. Carbon uptake rates in all seas displayed significant positive correlations with nitrate uptakes rather than ammonium uptakes, suggesting that the prevailing ammonium assimilations by dominant pico-sized phytoplankton contributed to the lower primary productions in 2018. Estimated annual new productions (30, 24, and 43 g C m−2 y−1) in the YS, SS, and EJS fall within the reported ranges for other regions. However, the EJS exhibited lower productions than previous reports (146 g C m−2 y−1), potentially impacting fishery yields and export production to the deep ocean in 2018. These findings, in the context of rapid environmental changes, provide crucial baseline information for monitoring future marine ecosystems in Korean seas.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology