Estimation of Annual Productivity of Sown Rainfed Grasslands Using Machine Learning

IF 2.7 3区 农林科学 Q1 AGRONOMY Grass and Forage Science Pub Date : 2025-01-16 DOI:10.1111/gfs.12707
Tiago G. Morais, Marjan Jongen, Camila Tufik, Nuno R. Rodrigues, Ivo Gama, João Serrano, Tiago Domingos, Ricardo F. M. Teixeira
{"title":"Estimation of Annual Productivity of Sown Rainfed Grasslands Using Machine Learning","authors":"Tiago G. Morais,&nbsp;Marjan Jongen,&nbsp;Camila Tufik,&nbsp;Nuno R. Rodrigues,&nbsp;Ivo Gama,&nbsp;João Serrano,&nbsp;Tiago Domingos,&nbsp;Ricardo F. M. Teixeira","doi":"10.1111/gfs.12707","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Grasslands play a critical role in providing diverse ecosystem services. Sown biodiverse pastures (SBP) rich in legumes are an important agricultural innovation that increases grassland productivity and reduces the need for fertilisers. This study developed a machine learning model to obtain spatially explicit estimations of the productivity of SBP, based on field sampling data from five Portuguese farms during four production years (2018–2021) and under two fertilisation regimes (conventional and variable rate). Weather data (such as temperature, precipitation and radiation), soil properties (including sand, silt, clay and pH), terrain characteristics (including elevation, slope, aspect, hillshade and topographic position index), and management data (including fertiliser application) were used as predictors. A variance inflation factor (VIF) approach was used to measure multicollinearity between input variables, leading to only 11 of the 53 input variables being used. Artificial neural network (ANN) methods were used to estimate pasture productivity, and hyper-parameterization optimization was performed to fine-tune the model. Plots under variable rate fertilisation were significantly improved by up to 20 kg P ha<sup>−1</sup> applied in the same year. Plots under conventional fertilisation benefitted the most from fertilisation in past years. The model demonstrated good generalisation, with similar estimation errors for both the training and test sets: for an average yield of 6096 kg ha<sup>−1</sup> in the sample, the root mean squared errors (RMSE) for the training and test sets were respectively 882 and 1125 kg ha<sup>−1</sup>. These results indicate that the model did not overfit the training data and can be used to estimate SBP productivity maps in the sampled farms. However, further studies are required to asses if the obtained model can be applied to new unseen data.</p>\n </div>","PeriodicalId":12767,"journal":{"name":"Grass and Forage Science","volume":"80 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass and Forage Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12707","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Grasslands play a critical role in providing diverse ecosystem services. Sown biodiverse pastures (SBP) rich in legumes are an important agricultural innovation that increases grassland productivity and reduces the need for fertilisers. This study developed a machine learning model to obtain spatially explicit estimations of the productivity of SBP, based on field sampling data from five Portuguese farms during four production years (2018–2021) and under two fertilisation regimes (conventional and variable rate). Weather data (such as temperature, precipitation and radiation), soil properties (including sand, silt, clay and pH), terrain characteristics (including elevation, slope, aspect, hillshade and topographic position index), and management data (including fertiliser application) were used as predictors. A variance inflation factor (VIF) approach was used to measure multicollinearity between input variables, leading to only 11 of the 53 input variables being used. Artificial neural network (ANN) methods were used to estimate pasture productivity, and hyper-parameterization optimization was performed to fine-tune the model. Plots under variable rate fertilisation were significantly improved by up to 20 kg P ha−1 applied in the same year. Plots under conventional fertilisation benefitted the most from fertilisation in past years. The model demonstrated good generalisation, with similar estimation errors for both the training and test sets: for an average yield of 6096 kg ha−1 in the sample, the root mean squared errors (RMSE) for the training and test sets were respectively 882 and 1125 kg ha−1. These results indicate that the model did not overfit the training data and can be used to estimate SBP productivity maps in the sampled farms. However, further studies are required to asses if the obtained model can be applied to new unseen data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Grass and Forage Science
Grass and Forage Science 农林科学-农艺学
CiteScore
5.10
自引率
8.30%
发文量
37
审稿时长
12 months
期刊介绍: Grass and Forage Science is a major English language journal that publishes the results of research and development in all aspects of grass and forage production, management and utilization; reviews of the state of knowledge on relevant topics; and book reviews. Authors are also invited to submit papers on non-agricultural aspects of grassland management such as recreational and amenity use and the environmental implications of all grassland systems. The Journal considers papers from all climatic zones.
期刊最新文献
Balancing Competing Grassland Ecosystem Services Requires Intensive Stakeholder Involvement and Actions on Different Spatial Scales Issue Information Issue Information Editorial Are We Up to the Best Practises in Forage and Grassland Precision Harvest? A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1