Oxidative Stress-Related KEAP1 and NRF2 Genes Contributed to the Risk of Epithelial Ovarian Cancer.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2025-02-13 DOI:10.1007/s10528-025-11044-z
Xiaoqian Tong, Xiaoli Zhu, Xila Wang, Yanlin Xu, Pei Huang, Leiqing Zhou, Yanxiang Ji, Lifang Wu
{"title":"Oxidative Stress-Related KEAP1 and NRF2 Genes Contributed to the Risk of Epithelial Ovarian Cancer.","authors":"Xiaoqian Tong, Xiaoli Zhu, Xila Wang, Yanlin Xu, Pei Huang, Leiqing Zhou, Yanxiang Ji, Lifang Wu","doi":"10.1007/s10528-025-11044-z","DOIUrl":null,"url":null,"abstract":"<p><p>The NRF2/KEAP1 signaling pathway, crucial for cellular defense against oxidative stress, may influence epithelial ovarian cancer (EOC) risk. This study investigates the association between KEAP1 gene polymorphisms and EOC risk in Han Chinese individuals, while exploring correlations between these genetic variants and serum levels of KEAP1 and NRF2 proteins. We conducted a case-control study involving 1962 EOC patients and 2057 controls, genotyping ten tag single-nucleotide polymorphisms (SNPs) in KEAP1. Serum KEAP1 and NRF2 levels were measured using ELISA. Genetic association analyses and ANOVA were employed to assess relationships between SNPs, EOC risk, and serum protein levels. Notably, only SNP rs3177696 in KEAP1 showed a significant association with EOC risk. The G allele of rs3177696 conferred a protective effect against EOC (OR [95% CI] = 0.58 [0.47-0.72], P = 2.91 × 10<sup>-7</sup>). Furthermore, rs3177696 genotypes were significantly associated with serum levels of both KEAP1 and NRF2, as well as their ratio. EOC patients carrying GG, AG, and AA genotypes exhibited mean serum KEAP1 levels of 2.46, 2.16, and 2.04 (P = 2.43 × 10<sup>-9</sup>), respectively. Conversely, serum NRF2 levels decreased with increasing G allele copies (GG: 4.58, AG: 4.95, AA: 5.02; P = 0.0002). This study provides compelling evidence linking EOC risk to the oxidative stress-related gene KEAP1, with the G allele of rs3177696 demonstrating a protective effect. These findings suggest a potential role for the NRF2/KEAP1 pathway in EOC pathogenesis and highlight promising avenues for future research in EOC prevention and treatment strategies.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11044-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The NRF2/KEAP1 signaling pathway, crucial for cellular defense against oxidative stress, may influence epithelial ovarian cancer (EOC) risk. This study investigates the association between KEAP1 gene polymorphisms and EOC risk in Han Chinese individuals, while exploring correlations between these genetic variants and serum levels of KEAP1 and NRF2 proteins. We conducted a case-control study involving 1962 EOC patients and 2057 controls, genotyping ten tag single-nucleotide polymorphisms (SNPs) in KEAP1. Serum KEAP1 and NRF2 levels were measured using ELISA. Genetic association analyses and ANOVA were employed to assess relationships between SNPs, EOC risk, and serum protein levels. Notably, only SNP rs3177696 in KEAP1 showed a significant association with EOC risk. The G allele of rs3177696 conferred a protective effect against EOC (OR [95% CI] = 0.58 [0.47-0.72], P = 2.91 × 10-7). Furthermore, rs3177696 genotypes were significantly associated with serum levels of both KEAP1 and NRF2, as well as their ratio. EOC patients carrying GG, AG, and AA genotypes exhibited mean serum KEAP1 levels of 2.46, 2.16, and 2.04 (P = 2.43 × 10-9), respectively. Conversely, serum NRF2 levels decreased with increasing G allele copies (GG: 4.58, AG: 4.95, AA: 5.02; P = 0.0002). This study provides compelling evidence linking EOC risk to the oxidative stress-related gene KEAP1, with the G allele of rs3177696 demonstrating a protective effect. These findings suggest a potential role for the NRF2/KEAP1 pathway in EOC pathogenesis and highlight promising avenues for future research in EOC prevention and treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Mechanism of Curcumin in the Treatment of Intrauterine Adhesions Based on Network Pharmacology, Molecular docking, and Experimental Validation. Oxidative Stress-Related KEAP1 and NRF2 Genes Contributed to the Risk of Epithelial Ovarian Cancer. Amino Acid Metabolism-Related Gene Kynureninase (KYNU) as a Prognostic Predictor and Regulator of Diffuse Large B-Cell Lymphoma. Exploring miR-34a, miR-449, and ADAM2/ADAM7 Expressions as Potential Biomarkers in Male Infertility: A Combined In Silico and Experimental Approach. Association Between ERBB2 and ERBB3 Polymorphisms and Dyslipidaemia and Serum Lipid Levels in a Chinese Population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1