Resveratrol modulates phosphorylation of ERK and AKT in murine cementoblasts during in vitro orthodontic compression.

IF 2.6 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE BMC Oral Health Pub Date : 2025-02-13 DOI:10.1186/s12903-025-05591-5
Shams Negm, Michael Wolf, Rogerio B Craveiro, Leon Schurgers, Joachim Jankowski, Rebekka K Schneider, Marta Rizk, Franziska Coenen, Isabel Knaup, Sihem Brenji, Christian Niederau
{"title":"Resveratrol modulates phosphorylation of ERK and AKT in murine cementoblasts during in vitro orthodontic compression.","authors":"Shams Negm, Michael Wolf, Rogerio B Craveiro, Leon Schurgers, Joachim Jankowski, Rebekka K Schneider, Marta Rizk, Franziska Coenen, Isabel Knaup, Sihem Brenji, Christian Niederau","doi":"10.1186/s12903-025-05591-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Resveratrol is a plant polyphenol known for its anti-inflammatory and pro-regenerative properties. These could be beneficial in controlling potential side effects of orthodontic treatment, such as apical root resorption. Orthodontic tooth movement occurs as part of a sterile inflammatory response. However, dysregulation of this process can result in pathologically increased osteoclast activity in the radicular vicinity, leading to unwanted root resorption. Previous studies have shown that root cementum cells can modulate recruitment of osteoclast precursors and cementum repair.</p><p><strong>Material and methods: </strong>We investigated the effect of resveratrol on mechanically stimulated murine cementoblasts (OCCM-30) with regards to cell viability, and mRNA expression and protein levels of pro-inflammatory cytokines. Furthermore, the modulation of central related kinases was investigated.</p><p><strong>Results: </strong>Resveratrol increased viability of OCCM-30 in a time- and dose-dependent manner and significantly reduced upregulation of pERK and pAKT, upstream regulators of key cellular metabolic pathways. Furthermore, we describe for the first time that cementoblasts respond to compression with accelerated activation of STAT3 and increased translocation of NF-κB p65 into the nucleus.</p><p><strong>Conclusion: </strong>This study shows a regulation of pAKT and pERK by resveratrol in OCCM-30 cells without a negative effect on cell viability. Therefore, resveratrol may have the potential to modulate the periodontal response to mechanical stimulation.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"226"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05591-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Resveratrol is a plant polyphenol known for its anti-inflammatory and pro-regenerative properties. These could be beneficial in controlling potential side effects of orthodontic treatment, such as apical root resorption. Orthodontic tooth movement occurs as part of a sterile inflammatory response. However, dysregulation of this process can result in pathologically increased osteoclast activity in the radicular vicinity, leading to unwanted root resorption. Previous studies have shown that root cementum cells can modulate recruitment of osteoclast precursors and cementum repair.

Material and methods: We investigated the effect of resveratrol on mechanically stimulated murine cementoblasts (OCCM-30) with regards to cell viability, and mRNA expression and protein levels of pro-inflammatory cytokines. Furthermore, the modulation of central related kinases was investigated.

Results: Resveratrol increased viability of OCCM-30 in a time- and dose-dependent manner and significantly reduced upregulation of pERK and pAKT, upstream regulators of key cellular metabolic pathways. Furthermore, we describe for the first time that cementoblasts respond to compression with accelerated activation of STAT3 and increased translocation of NF-κB p65 into the nucleus.

Conclusion: This study shows a regulation of pAKT and pERK by resveratrol in OCCM-30 cells without a negative effect on cell viability. Therefore, resveratrol may have the potential to modulate the periodontal response to mechanical stimulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Oral Health
BMC Oral Health DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.90
自引率
6.90%
发文量
481
审稿时长
6-12 weeks
期刊介绍: BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Resveratrol modulates phosphorylation of ERK and AKT in murine cementoblasts during in vitro orthodontic compression. Histomorphometric and immunohistochemical assessment of treated dentin matrix delivered by platelet-rich fibrin for socket preservation in rabbit model. The understanding of digital communication experts and oral cancer at-risk persons on oral cancer, their uptake of educational mobile health applications on oral cancer, and their opinions on how a good application of such should look like: findings from a qualitative study. Cross-cultural adaptation and validation of the Persian version of the oral health values scale. Effect of aging on the marginal fit of milled and printed zirconia crowns: an in-vitro study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1