Interventions for myopia control in children: a living systematic review and network meta-analysis.

IF 8.8 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL Cochrane Database of Systematic Reviews Pub Date : 2025-02-13 DOI:10.1002/14651858.CD014758.pub3
John G Lawrenson, Byki Huntjens, Gianni Virgili, Sueko Ng, Rohit Dhakal, Laura E Downie, Pavan K Verkicharla, Ashleigh Kernohan, Tianjing Li, Jeffrey J Walline
{"title":"Interventions for myopia control in children: a living systematic review and network meta-analysis.","authors":"John G Lawrenson, Byki Huntjens, Gianni Virgili, Sueko Ng, Rohit Dhakal, Laura E Downie, Pavan K Verkicharla, Ashleigh Kernohan, Tianjing Li, Jeffrey J Walline","doi":"10.1002/14651858.CD014758.pub3","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>The increasing prevalence of myopia is a growing global public health problem, in terms of rates of uncorrected refractive error and significantly, an increased risk of visual impairment due to myopia-related ocular morbidity. Interventions to slow its progression are needed in childhood, when myopia progression is most rapid. This is a review update, conducted as part of a living systematic review.</p><p><strong>Objectives: </strong>To assess the comparative efficacy and safety of interventions for slowing myopia progression in children using network meta-analysis (NMA). To generate a relative ranking of interventions according to their efficacy. To produce a brief economic commentary, summarising economic evaluations.</p><p><strong>Search methods: </strong>We searched CENTRAL, MEDLINE, Embase, and three trial registers. The latest search date was 19 February 2024.</p><p><strong>Eligibility criteria: </strong>We included randomised controlled trials (RCTs) of optical, pharmacological, light therapy and behavioural interventions for slowing myopia progression in children, up to 18 years old.</p><p><strong>Outcomes: </strong>Critical outcomes were progression of myopia (mean difference (MD) in the change in spherical equivalent refraction (SER, dioptres (D)), and axial length (AL, mm) in the intervention and control groups at one year or longer), and difference in the change in SER and AL following cessation of treatment (rebound).</p><p><strong>Risk of bias: </strong>We assessed the risk of bias (RoB) for SER and AL using the Cochrane RoB 2 tool.</p><p><strong>Synthesis methods: </strong>We followed standard Cochrane methods. We rated the certainty of evidence using the GRADE approach for change in SER and AL at one and two years. We used the surface under the cumulative ranking curve (SUCRA) to rank the interventions for all available outcomes.</p><p><strong>Included studies: </strong>We included 104 studies (40 new for this update) that randomised 17,509 children, aged 4 years to 18 years. Most studies were conducted in China or other Asian countries (66.3%), and North America (14.4%). Eighty-four studies (80.8%) compared myopia control interventions against inactive controls. Study durations ranged from 12 months to 48 months.</p><p><strong>Synthesis of results: </strong>Since most of the networks in the NMA were poorly connected, our estimates are based on direct (pairwise) comparisons, unless stated otherwise. The median change in SER for controls was -0.65 D (55 studies, 4888 participants; one-year follow-up). These interventions may reduce SER progression compared to controls: repeated low intensity red light (RLRL: MD 0.80 D, 95% confidence interval (CI) 0.71 to 0.89; SUCRA = 93.8%; very low-certainty evidence); high-dose atropine (HDA (≥ 0.5%): MD 0.90 D, 95% CI 0.62 to 1.18; SUCRA = 93.3%; moderate-certainty evidence); medium-dose atropine (MDA (0.1% to < 0.5%): MD 0.55 D, 95% CI 0.17 to 0.93; NMA estimate SUCRA = 75.5%; low-certainty evidence); low dose atropine (LDA (< 0.1%): MD 0.25 D, 95% CI 0.16 to 0.35; SUCRA = 53.2%; very low-certainty evidence); peripheral plus spectacle lenses (PPSL: MD 0.45 D, 95% CI 0.16 to 0.74; SUCRA = 50.2%; very low-certainty evidence); multifocal soft contact lenses (MFSCL: MD 0.27 D, 95% CI 0.18 to 0.35; SUCRA = 49.9%; very low-certainty evidence); and multifocal spectacle lenses (MFSL: MD 0.14 D, 95% CI 0.08 to 0.21; SUCRA = 30.8%; low-certainty evidence). The median change in AL for controls was 0.33 mm (58 studies, 9085 participants; one-year follow-up). These interventions may reduce axial elongation compared to controls: RLRL (MD -0.33 mm, 95% CI -0.37 to -0.29; SUCRA = 98.6%; very low-certainty evidence); HDA (MD -0.33 mm, 95% CI -0.35 to -0.30; SUCRA = 88.4%; moderate-certainty evidence); MDA (MD -0.24 mm, 95% CI -0.34 to -0.15; NMA estimate SUCRA = 75.8%; low-certainty evidence); LDA (MD -0.10 mm, 95% CI -0.13 to -0.07; SUCRA = 36.1%; very low-certainty evidence); orthokeratology (ortho-K: MD -0.18 mm, 95% CI -0.21 to -0.14; SUCRA = 79%; moderate-certainty evidence); PPSL (MD -0.13 mm, 95% CI -0.21 to -0.05; SUCRA = 52.6%; very low-certainty evidence); MFSCL (MD -0.11 mm, 95% CI -0.13 to -0.09; SUCRA = 45.6%; low-certainty evidence); and MFSL (MD -0.06 mm, 95% CI -0.09 to -0.04; SUCRA = 26.3%; low-certainty evidence). Ortho-K plus LDA probably reduces axial elongation more than ortho-K monotherapy (MD -0.12 mm, 95% CI -0.15 to -0.09; SUCRA = 81.8%; moderate-certainty evidence). At two-year follow-up, change in SER was reported in 34 studies (3556 participants). The median change in SER for controls was -1.01 D. The ranking of interventions to reduce SER progression was close to that observed at one year; there were insufficient data to draw conclusions on cumulative effects. The highest-ranking interventions were: HAD (SUCRA = 97%); MDA (NMA estimate SUCRA = 69.8%); and PPSL (SUCRA = 69.1%). At two-year follow-up, change in AL was reported in 33 studies (3334 participants). The median change in AL for controls was 0.56 mm. The ranking of interventions to reduce axial elongation was similar to that observed at one year; there were insufficient data to draw conclusions on cumulative effects. The highest-ranking interventions were: ortho-K plus LDA (SUCRA = 94.2%); HAD (SUCRA = 96.8%); and MDA (NMA estimate SUCRA = 88.4%). There was limited evidence on whether cessation of myopia control therapy increases progression beyond the expected rate of progression with age. Adverse events and treatment adherence were not consistently reported. Two studies reported quality of life, showing little to no difference between intervention and control groups. We were unable to draw firm conclusions regarding the relative costs or efficiency of different myopia control strategies in children.</p><p><strong>Authors' conclusions: </strong>Most studies compared pharmacological and optical treatments to slow the progression of myopia with an inactive comparator. These interventions may slow refractive change and reduce axial elongation, although results were often heterogeneous. Less evidence is available for two years and beyond; uncertainty remains about the sustained effect of these interventions. Longer term and better quality studies comparing myopia control interventions alone or in combination are needed, with improved methods for monitoring and reporting adverse effects.</p><p><strong>Funding: </strong>Cochrane Eyes and Vision US Project is supported by grant UG1EY020522, National Eye Institute, National Institutes of Health.</p><p><strong>Registration: </strong>The previous version of this living systematic review is available at doi: 10.1002/14651858.CD014758.pub2.</p>","PeriodicalId":10473,"journal":{"name":"Cochrane Database of Systematic Reviews","volume":"2 ","pages":"CD014758"},"PeriodicalIF":8.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cochrane Database of Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/14651858.CD014758.pub3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: The increasing prevalence of myopia is a growing global public health problem, in terms of rates of uncorrected refractive error and significantly, an increased risk of visual impairment due to myopia-related ocular morbidity. Interventions to slow its progression are needed in childhood, when myopia progression is most rapid. This is a review update, conducted as part of a living systematic review.

Objectives: To assess the comparative efficacy and safety of interventions for slowing myopia progression in children using network meta-analysis (NMA). To generate a relative ranking of interventions according to their efficacy. To produce a brief economic commentary, summarising economic evaluations.

Search methods: We searched CENTRAL, MEDLINE, Embase, and three trial registers. The latest search date was 19 February 2024.

Eligibility criteria: We included randomised controlled trials (RCTs) of optical, pharmacological, light therapy and behavioural interventions for slowing myopia progression in children, up to 18 years old.

Outcomes: Critical outcomes were progression of myopia (mean difference (MD) in the change in spherical equivalent refraction (SER, dioptres (D)), and axial length (AL, mm) in the intervention and control groups at one year or longer), and difference in the change in SER and AL following cessation of treatment (rebound).

Risk of bias: We assessed the risk of bias (RoB) for SER and AL using the Cochrane RoB 2 tool.

Synthesis methods: We followed standard Cochrane methods. We rated the certainty of evidence using the GRADE approach for change in SER and AL at one and two years. We used the surface under the cumulative ranking curve (SUCRA) to rank the interventions for all available outcomes.

Included studies: We included 104 studies (40 new for this update) that randomised 17,509 children, aged 4 years to 18 years. Most studies were conducted in China or other Asian countries (66.3%), and North America (14.4%). Eighty-four studies (80.8%) compared myopia control interventions against inactive controls. Study durations ranged from 12 months to 48 months.

Synthesis of results: Since most of the networks in the NMA were poorly connected, our estimates are based on direct (pairwise) comparisons, unless stated otherwise. The median change in SER for controls was -0.65 D (55 studies, 4888 participants; one-year follow-up). These interventions may reduce SER progression compared to controls: repeated low intensity red light (RLRL: MD 0.80 D, 95% confidence interval (CI) 0.71 to 0.89; SUCRA = 93.8%; very low-certainty evidence); high-dose atropine (HDA (≥ 0.5%): MD 0.90 D, 95% CI 0.62 to 1.18; SUCRA = 93.3%; moderate-certainty evidence); medium-dose atropine (MDA (0.1% to < 0.5%): MD 0.55 D, 95% CI 0.17 to 0.93; NMA estimate SUCRA = 75.5%; low-certainty evidence); low dose atropine (LDA (< 0.1%): MD 0.25 D, 95% CI 0.16 to 0.35; SUCRA = 53.2%; very low-certainty evidence); peripheral plus spectacle lenses (PPSL: MD 0.45 D, 95% CI 0.16 to 0.74; SUCRA = 50.2%; very low-certainty evidence); multifocal soft contact lenses (MFSCL: MD 0.27 D, 95% CI 0.18 to 0.35; SUCRA = 49.9%; very low-certainty evidence); and multifocal spectacle lenses (MFSL: MD 0.14 D, 95% CI 0.08 to 0.21; SUCRA = 30.8%; low-certainty evidence). The median change in AL for controls was 0.33 mm (58 studies, 9085 participants; one-year follow-up). These interventions may reduce axial elongation compared to controls: RLRL (MD -0.33 mm, 95% CI -0.37 to -0.29; SUCRA = 98.6%; very low-certainty evidence); HDA (MD -0.33 mm, 95% CI -0.35 to -0.30; SUCRA = 88.4%; moderate-certainty evidence); MDA (MD -0.24 mm, 95% CI -0.34 to -0.15; NMA estimate SUCRA = 75.8%; low-certainty evidence); LDA (MD -0.10 mm, 95% CI -0.13 to -0.07; SUCRA = 36.1%; very low-certainty evidence); orthokeratology (ortho-K: MD -0.18 mm, 95% CI -0.21 to -0.14; SUCRA = 79%; moderate-certainty evidence); PPSL (MD -0.13 mm, 95% CI -0.21 to -0.05; SUCRA = 52.6%; very low-certainty evidence); MFSCL (MD -0.11 mm, 95% CI -0.13 to -0.09; SUCRA = 45.6%; low-certainty evidence); and MFSL (MD -0.06 mm, 95% CI -0.09 to -0.04; SUCRA = 26.3%; low-certainty evidence). Ortho-K plus LDA probably reduces axial elongation more than ortho-K monotherapy (MD -0.12 mm, 95% CI -0.15 to -0.09; SUCRA = 81.8%; moderate-certainty evidence). At two-year follow-up, change in SER was reported in 34 studies (3556 participants). The median change in SER for controls was -1.01 D. The ranking of interventions to reduce SER progression was close to that observed at one year; there were insufficient data to draw conclusions on cumulative effects. The highest-ranking interventions were: HAD (SUCRA = 97%); MDA (NMA estimate SUCRA = 69.8%); and PPSL (SUCRA = 69.1%). At two-year follow-up, change in AL was reported in 33 studies (3334 participants). The median change in AL for controls was 0.56 mm. The ranking of interventions to reduce axial elongation was similar to that observed at one year; there were insufficient data to draw conclusions on cumulative effects. The highest-ranking interventions were: ortho-K plus LDA (SUCRA = 94.2%); HAD (SUCRA = 96.8%); and MDA (NMA estimate SUCRA = 88.4%). There was limited evidence on whether cessation of myopia control therapy increases progression beyond the expected rate of progression with age. Adverse events and treatment adherence were not consistently reported. Two studies reported quality of life, showing little to no difference between intervention and control groups. We were unable to draw firm conclusions regarding the relative costs or efficiency of different myopia control strategies in children.

Authors' conclusions: Most studies compared pharmacological and optical treatments to slow the progression of myopia with an inactive comparator. These interventions may slow refractive change and reduce axial elongation, although results were often heterogeneous. Less evidence is available for two years and beyond; uncertainty remains about the sustained effect of these interventions. Longer term and better quality studies comparing myopia control interventions alone or in combination are needed, with improved methods for monitoring and reporting adverse effects.

Funding: Cochrane Eyes and Vision US Project is supported by grant UG1EY020522, National Eye Institute, National Institutes of Health.

Registration: The previous version of this living systematic review is available at doi: 10.1002/14651858.CD014758.pub2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.60
自引率
2.40%
发文量
173
审稿时长
1-2 weeks
期刊介绍: The Cochrane Database of Systematic Reviews (CDSR) stands as the premier database for systematic reviews in healthcare. It comprises Cochrane Reviews, along with protocols for these reviews, editorials, and supplements. Owned and operated by Cochrane, a worldwide independent network of healthcare stakeholders, the CDSR (ISSN 1469-493X) encompasses a broad spectrum of health-related topics, including health services.
期刊最新文献
Breastfeeding interventions for preventing postpartum depression. Glucagon-like peptide 1 (GLP-1) receptor agonists for people with chronic kidney disease and diabetes. Interventions for myopia control in children: a living systematic review and network meta-analysis. Microsurgical versus complex physical decongestive therapy for chronic breast cancer-related lymphoedema. Oral nicotine pouches for cessation or reduction of use of other tobacco or nicotine products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1