Coline Royaux, Jean-Baptiste Mihoub, Marie Jossé, Dominique Pelletier, Olivier Norvez, Yves Reecht, Anne Fouilloux, Helena Rasche, Saskia Hiltemann, Bérénice Batut, Eléaume Marc, Pauline Seguineau, Guillaume Massé, Alan Amossé, Claire Bissery, Romain Lorrilliere, Alexis Martin, Yves Bas, Thimothée Virgoulay, Valentin Chambon, Elie Arnaud, Elisa Michon, Clara Urfer, Eloïse Trigodet, Marie Delannoy, Gregoire Loïs, Romain Julliard, Björn Grüning, Yvan Le Bras
{"title":"Guidance framework to apply best practices in ecological data analysis: lessons learned from building Galaxy-Ecology.","authors":"Coline Royaux, Jean-Baptiste Mihoub, Marie Jossé, Dominique Pelletier, Olivier Norvez, Yves Reecht, Anne Fouilloux, Helena Rasche, Saskia Hiltemann, Bérénice Batut, Eléaume Marc, Pauline Seguineau, Guillaume Massé, Alan Amossé, Claire Bissery, Romain Lorrilliere, Alexis Martin, Yves Bas, Thimothée Virgoulay, Valentin Chambon, Elie Arnaud, Elisa Michon, Clara Urfer, Eloïse Trigodet, Marie Delannoy, Gregoire Loïs, Romain Julliard, Björn Grüning, Yvan Le Bras","doi":"10.1093/gigascience/giae122","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous conceptual frameworks exist for best practices in research data and analysis (e.g., Open Science and FAIR principles). In practice, there is a need for further progress to improve transparency, reproducibility, and confidence in ecology. Here, we propose a practical and operational framework for researchers and experts in ecology to achieve best practices for building analytical procedures from individual research projects to production-level analytical pipelines. We introduce the concept of atomization to identify analytical steps that support generalization by allowing us to go beyond single analyses. The term atomization is employed to convey the idea of single analytical steps as \"atoms\" composing an analytical procedure. When generalized, \"atoms\" can be used in more than a single case analysis. These guidelines were established during the development of the Galaxy-Ecology initiative, a web platform dedicated to data analysis in ecology. Galaxy-Ecology allows us to demonstrate a way to reach higher levels of reproducibility in ecological sciences by increasing the accessibility and reusability of analytical workflows once atomized and generalized.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae122","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous conceptual frameworks exist for best practices in research data and analysis (e.g., Open Science and FAIR principles). In practice, there is a need for further progress to improve transparency, reproducibility, and confidence in ecology. Here, we propose a practical and operational framework for researchers and experts in ecology to achieve best practices for building analytical procedures from individual research projects to production-level analytical pipelines. We introduce the concept of atomization to identify analytical steps that support generalization by allowing us to go beyond single analyses. The term atomization is employed to convey the idea of single analytical steps as "atoms" composing an analytical procedure. When generalized, "atoms" can be used in more than a single case analysis. These guidelines were established during the development of the Galaxy-Ecology initiative, a web platform dedicated to data analysis in ecology. Galaxy-Ecology allows us to demonstrate a way to reach higher levels of reproducibility in ecological sciences by increasing the accessibility and reusability of analytical workflows once atomized and generalized.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.