Molecular Dynamics Investigation of the Diffusion Mechanisms and Thermodynamic Behaviors in Warm Mix Recycled Asphalt Binders with and Without Rejuvenators.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2025-02-05 DOI:10.3390/ma18030703
Qisheng Hu, Derun Zhang, Peixin Xu
{"title":"Molecular Dynamics Investigation of the Diffusion Mechanisms and Thermodynamic Behaviors in Warm Mix Recycled Asphalt Binders with and Without Rejuvenators.","authors":"Qisheng Hu, Derun Zhang, Peixin Xu","doi":"10.3390/ma18030703","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the employment of rejuvenators and warm mix asphalt (WMA) additives for reclaimed asphalt pavement (RAP) has been recognized as a popular approach to increase the recycling rate of waste materials and promote the sustainable development of pavement engineering. However, the composition of warm mix recycled asphalt binder is complicated, and the microstructural changes brought about by the rejuvenators and WMA additives are critical in determining its macroscopic mechanical properties. This research focuses on the atomic modeling of the rejuvenators and WMA additives diffusion behavior of the warm mix recycled asphalt binder. The objective is to reveal the thermodynamic performance and diffusion mechanism of the WMA binder under the dual presence of rejuvenators and WMA additives. Three types of mutual diffusion systems (Aged and oil + virgin + wax, Aged + virgin + wax, and Aged and oil + virgin) were established, respectively, for a comparative investigation of the glass transition temperature, viscosity, thermodynamics, free volume, and diffusion behavior. The results indicate a 44.27% and 31.33% decrease in the glass transition temperature and apparent viscosity, respectively, after the incorporation of 5% oil rejuvenators in the Aged + virgin + wax asphalt binder, demonstrating the improved cracking resistance and construction workability. The presence of the RAP binder and organic WMA additives raised the cohesion of the asphalt binder and decreased self-healing ability and free volume, and these detrimental influences can be offset by the introduction of rejuvenators. The combined use of rejuvenators and organic WMA additives remarkably enhanced the de-agglomeration to asphaltenes, stimulated the activity of aged RAP macromolecular components, and ultimately improved the blending efficiency of virgin binders with the overall structure of RAP binders.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030703","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the employment of rejuvenators and warm mix asphalt (WMA) additives for reclaimed asphalt pavement (RAP) has been recognized as a popular approach to increase the recycling rate of waste materials and promote the sustainable development of pavement engineering. However, the composition of warm mix recycled asphalt binder is complicated, and the microstructural changes brought about by the rejuvenators and WMA additives are critical in determining its macroscopic mechanical properties. This research focuses on the atomic modeling of the rejuvenators and WMA additives diffusion behavior of the warm mix recycled asphalt binder. The objective is to reveal the thermodynamic performance and diffusion mechanism of the WMA binder under the dual presence of rejuvenators and WMA additives. Three types of mutual diffusion systems (Aged and oil + virgin + wax, Aged + virgin + wax, and Aged and oil + virgin) were established, respectively, for a comparative investigation of the glass transition temperature, viscosity, thermodynamics, free volume, and diffusion behavior. The results indicate a 44.27% and 31.33% decrease in the glass transition temperature and apparent viscosity, respectively, after the incorporation of 5% oil rejuvenators in the Aged + virgin + wax asphalt binder, demonstrating the improved cracking resistance and construction workability. The presence of the RAP binder and organic WMA additives raised the cohesion of the asphalt binder and decreased self-healing ability and free volume, and these detrimental influences can be offset by the introduction of rejuvenators. The combined use of rejuvenators and organic WMA additives remarkably enhanced the de-agglomeration to asphaltenes, stimulated the activity of aged RAP macromolecular components, and ultimately improved the blending efficiency of virgin binders with the overall structure of RAP binders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Correction: Badea et al. New Trends in Separation Techniques of Lithium Isotopes: A Review of Chemical Separation Methods. Materials 2023, 16, 3817. Formulation of Hyperelastic Constitutive Model for Human Periodontal Ligament Based on Fiber Volume Fraction. Multi-Scale Anisotropic Yield Function Based on Neural Network Model. Identification of Dynamic Recrystallization Model Parameters for 40CrMnMoA Alloy Steel Using the Inverse Optimization Method. Numerical Study on the In-Service Welding Stress of X80 Steel Natural Gas Pipeline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1