Mir Zaman Hussain, Stephen K Hamilton, Bruno Basso, G Philip Robertson
{"title":"Phosphorus budgets of intensively managed row crops at a long-term agroecosystem research site in the upper US Midwest.","authors":"Mir Zaman Hussain, Stephen K Hamilton, Bruno Basso, G Philip Robertson","doi":"10.1002/jeq2.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) budgets for cropping systems provide insights for keeping soil P at optimal levels for crops while avoiding excess inputs. We quantified 12 years of P inputs (fertilizer and atmospheric deposition) and outputs (harvest and leaching losses) for replicated maize (Zea mays L.)-soybean (Glycine max L.)-wheat (Triticum aestivum) crop rotations under conventional, no-till, reduced input, and biologically based (organic without compost or manure) management systems at the Kellogg Biological Station LTAR site in southwest Michigan. Conventional, no-till, and reduced input systems were fertilized between 13 and 50 kg P ha<sup>-1</sup> depending on year. Soil test phosphorus (STP) was measured at 0- to 25-cm depth every autumn. Leached P was measured as dissolved P in the soil solution sampled beneath the rooting depth and combined with modeled percolation. Fertilization and harvest were the predominant P fluxes in the fertilized systems, whereas only harvest dominated P flux in the unfertilized organic system. Leaching losses were minor terms in the budgets, but leachate concentrations were nevertheless close to the range of concern for downstream eutrophication. Over the 12-year study period, the organic system exhibited a negative P balance (-82.0 kg P ha<sup>-1</sup>), coinciding with suboptimal STP levels, suggesting a need for P supplementation. In contrast, the fertilized systems showed positive P balances (mean: 70.1 kg P ha<sup>-1</sup>) with STP levels well above agronomic optima. Results underscore the importance of tailored P management strategies to sustain crop productivity while mitigating environmental impacts.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.70000","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) budgets for cropping systems provide insights for keeping soil P at optimal levels for crops while avoiding excess inputs. We quantified 12 years of P inputs (fertilizer and atmospheric deposition) and outputs (harvest and leaching losses) for replicated maize (Zea mays L.)-soybean (Glycine max L.)-wheat (Triticum aestivum) crop rotations under conventional, no-till, reduced input, and biologically based (organic without compost or manure) management systems at the Kellogg Biological Station LTAR site in southwest Michigan. Conventional, no-till, and reduced input systems were fertilized between 13 and 50 kg P ha-1 depending on year. Soil test phosphorus (STP) was measured at 0- to 25-cm depth every autumn. Leached P was measured as dissolved P in the soil solution sampled beneath the rooting depth and combined with modeled percolation. Fertilization and harvest were the predominant P fluxes in the fertilized systems, whereas only harvest dominated P flux in the unfertilized organic system. Leaching losses were minor terms in the budgets, but leachate concentrations were nevertheless close to the range of concern for downstream eutrophication. Over the 12-year study period, the organic system exhibited a negative P balance (-82.0 kg P ha-1), coinciding with suboptimal STP levels, suggesting a need for P supplementation. In contrast, the fertilized systems showed positive P balances (mean: 70.1 kg P ha-1) with STP levels well above agronomic optima. Results underscore the importance of tailored P management strategies to sustain crop productivity while mitigating environmental impacts.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.