STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-02-13 DOI:10.1128/jvi.00018-25
Huixin Zhu, Jinxiu Lou, Zhen Yang, Juan Bai, Ping Jiang, Xianwei Wang, Xing Liu
{"title":"STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein.","authors":"Huixin Zhu, Jinxiu Lou, Zhen Yang, Juan Bai, Ping Jiang, Xianwei Wang, Xing Liu","doi":"10.1128/jvi.00018-25","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine epidemic diarrhea virus (PEDV), a highly pathogenic enteric coronavirus, has caused significant economic losses worldwide in recent years. The PEDV spike (S) protein has been reported to undergo extensive N-glycosylation, suggesting that glycosylation plays a crucial role in PEDV replication. In this study, we demonstrated that the N-glycosylation pathway promotes PEDV replication by facilitating the glycosylation of the S protein. First, we observed that pharmacological inhibition of host N-glycosylation using specific inhibitors significantly reduces viral replication. Furthermore, genetic ablation of STT3A or STT3B, the catalytically active subunits of the oligosaccharyltransferase (OST) complex, revealed that the STT3B-OST complex, but not STT3A, is preferentially required for PEDV replication. Notably, we showed that the N-glycosylation of the PEDV S protein depends on the oligosaccharyltransferase activity of STT3B. Together, the study demonstrated the critical role of the N-glycosylation pathway in PEDV replication by elucidating the relationship between the N-glycosylation of the PEDV S protein and STT3B, thereby presenting a potential new target for the prevention and control of PEDV.IMPORTANCEThe highly N-glycosylated spike protein of porcine epidemic diarrhea virus (PEDV) is a multifunctional protein that plays a crucial role in the viral replication cycle. In this study, using pharmacological inhibitors, we demonstrated the importance of the N-glycosylation pathway in PEDV replication. Genetic analysis revealed that STT3B, one of the catalytically active subunits of the oligosaccharyltransferase complex, promotes viral proliferation by regulating the N-glycosylation of the PEDV spike protein. Our findings enhance the understanding of the role of the N-glycosylation pathway in viral infection and identify STT3B as a potential therapeutic target for controlling PEDV infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0001825"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00018-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Porcine epidemic diarrhea virus (PEDV), a highly pathogenic enteric coronavirus, has caused significant economic losses worldwide in recent years. The PEDV spike (S) protein has been reported to undergo extensive N-glycosylation, suggesting that glycosylation plays a crucial role in PEDV replication. In this study, we demonstrated that the N-glycosylation pathway promotes PEDV replication by facilitating the glycosylation of the S protein. First, we observed that pharmacological inhibition of host N-glycosylation using specific inhibitors significantly reduces viral replication. Furthermore, genetic ablation of STT3A or STT3B, the catalytically active subunits of the oligosaccharyltransferase (OST) complex, revealed that the STT3B-OST complex, but not STT3A, is preferentially required for PEDV replication. Notably, we showed that the N-glycosylation of the PEDV S protein depends on the oligosaccharyltransferase activity of STT3B. Together, the study demonstrated the critical role of the N-glycosylation pathway in PEDV replication by elucidating the relationship between the N-glycosylation of the PEDV S protein and STT3B, thereby presenting a potential new target for the prevention and control of PEDV.IMPORTANCEThe highly N-glycosylated spike protein of porcine epidemic diarrhea virus (PEDV) is a multifunctional protein that plays a crucial role in the viral replication cycle. In this study, using pharmacological inhibitors, we demonstrated the importance of the N-glycosylation pathway in PEDV replication. Genetic analysis revealed that STT3B, one of the catalytically active subunits of the oligosaccharyltransferase complex, promotes viral proliferation by regulating the N-glycosylation of the PEDV spike protein. Our findings enhance the understanding of the role of the N-glycosylation pathway in viral infection and identify STT3B as a potential therapeutic target for controlling PEDV infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein. Tracing more than two decades of Japanese encephalitis virus circulation in mainland China. A capsidless (+)RNA yadokarivirus hosted by a dsRNA virus is infectious as particles, cDNA, and dsRNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1