Phenotype puzzle: the role of novel LMBRD1 gene variant in Cbl deficiency causing Dyskeratosis Congenita-like clinical manifestations

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY Journal of Human Genetics Pub Date : 2025-02-13 DOI:10.1038/s10038-025-01320-6
Anjali Shah, Santosh Khuba, Selvaa Kumar C, Chandrakala Shanmukhaiah, Merin George, Somprakash Dhangar, Jagdeeshwar Ghatanatti, Babu Rao Vundinti
{"title":"Phenotype puzzle: the role of novel LMBRD1 gene variant in Cbl deficiency causing Dyskeratosis Congenita-like clinical manifestations","authors":"Anjali Shah, Santosh Khuba, Selvaa Kumar C, Chandrakala Shanmukhaiah, Merin George, Somprakash Dhangar, Jagdeeshwar Ghatanatti, Babu Rao Vundinti","doi":"10.1038/s10038-025-01320-6","DOIUrl":null,"url":null,"abstract":"Cobalamin (Cbl) metabolism deficiencies are a heterogeneous group (CblA, CblB, CblC, CblD, CblE, CblF, CblG) of autosomal recessive disorders. CblF deficiency occurs due to mutations in LMBRD1 gene, causing variable phenotype, including neurological, haematological, developmental and dermatological defects. Here, we describe a 15-year-old male, presented with clinical features of Dyskeratosis Congenita (DC) such as dystrophic nails, skin discoloration with additional clinical features of uniform reticulate-brown hued hyperpigmentation, developmental delay, mild intellectual disability, mucositis and anemia. Genomic analysis using high throughput next generation sequencing (NGS) identified a novel splice site deletion (c.562+4_562+7del) in the LMBRD1 gene resulting in Cbl deficiency. cDNA sequencing elucidated exon 6 skipping as a consequence of a novel deletion, resulting in significant structural alterations of LMBD1 protein, which was further validated by in-silico computational analysis. Computational modeling and docking studies revealed a reduced interaction affinity between the LMBD1 protein and its partner protein ABCD4. These alterations contribute to a disrupted cascade mechanism in cobalamin (Cbl) metabolism resulting in development of variable clinical phenotypes. In our case, the proband was treated with intravenous hydroxocobalamin therapy and follow up showed a significant improvement in clinical symptoms of skin hyperpigmentation, angular cheilitis and aphthous ulcers. Hence the genomic analysis is essentially important for the appropriate genetic counseling and management of the disease.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"70 4","pages":"207-213"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-025-01320-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalamin (Cbl) metabolism deficiencies are a heterogeneous group (CblA, CblB, CblC, CblD, CblE, CblF, CblG) of autosomal recessive disorders. CblF deficiency occurs due to mutations in LMBRD1 gene, causing variable phenotype, including neurological, haematological, developmental and dermatological defects. Here, we describe a 15-year-old male, presented with clinical features of Dyskeratosis Congenita (DC) such as dystrophic nails, skin discoloration with additional clinical features of uniform reticulate-brown hued hyperpigmentation, developmental delay, mild intellectual disability, mucositis and anemia. Genomic analysis using high throughput next generation sequencing (NGS) identified a novel splice site deletion (c.562+4_562+7del) in the LMBRD1 gene resulting in Cbl deficiency. cDNA sequencing elucidated exon 6 skipping as a consequence of a novel deletion, resulting in significant structural alterations of LMBD1 protein, which was further validated by in-silico computational analysis. Computational modeling and docking studies revealed a reduced interaction affinity between the LMBD1 protein and its partner protein ABCD4. These alterations contribute to a disrupted cascade mechanism in cobalamin (Cbl) metabolism resulting in development of variable clinical phenotypes. In our case, the proband was treated with intravenous hydroxocobalamin therapy and follow up showed a significant improvement in clinical symptoms of skin hyperpigmentation, angular cheilitis and aphthous ulcers. Hence the genomic analysis is essentially important for the appropriate genetic counseling and management of the disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
期刊最新文献
Translocation-specific polymerase chain reaction in preimplantation genetic testing for recurrent translocation carrier. Germline mosaicism in TCF20-associated neurodevelopmental disorders: a case study and literature review Beyond CHD7 gene: unveiling genetic diversity in clinically suspected CHARGE syndrome. Novel FBN1 intron variant causes isolated ectopia lentis via in-frame exon skipping Phenotype puzzle: the role of novel LMBRD1 gene variant in Cbl deficiency causing Dyskeratosis Congenita-like clinical manifestations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1