Yi-Hui Wang, Hannah L Hertz, Benjamin Pastore, Wen Tang
{"title":"An AT-hook transcription factor promotes transcription of histone, spliced-leader, and piRNA clusters.","authors":"Yi-Hui Wang, Hannah L Hertz, Benjamin Pastore, Wen Tang","doi":"10.1093/nar/gkaf079","DOIUrl":null,"url":null,"abstract":"<p><p>In all three domains of life, genes with related functions can be organized into specific genomic regions known as gene clusters. In eukaryotes, histone, piRNA (Piwi-interacting RNA), and rDNA (ribosomal DNA) clusters are among the most notable clusters which play fundamental roles in chromatin formation, genome integrity, and translation, respectively. These clusters have long been thought to be regulated by distinct transcriptional mechanisms. In this study, using Caenorhabditis elegans as a model system we identify ATTF-6, a member of the AT-hook family, as a key factor for the expression of histone, piRNA, and 5S rDNA-SL1 (spliced leader 1) clusters. ATTF-6 is essential for C. elegans viability. It forms distinct nuclear foci at both piRNA and 5S rDNA-SL1 clusters. Loss of ATTF-6 leads to a depletion of histone mRNAs, SL1 transcripts, and piRNAs. Additionally, we demonstrate that ATTF-6 is required for the recruitment of USTC (Upstream Sequence Transcription Complex) to piRNA clusters, which is necessary for piRNA production. Collectively, our findings reveal a unifying role for an AT-hook transcription factor in promoting the expression of fundamental gene clusters.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In all three domains of life, genes with related functions can be organized into specific genomic regions known as gene clusters. In eukaryotes, histone, piRNA (Piwi-interacting RNA), and rDNA (ribosomal DNA) clusters are among the most notable clusters which play fundamental roles in chromatin formation, genome integrity, and translation, respectively. These clusters have long been thought to be regulated by distinct transcriptional mechanisms. In this study, using Caenorhabditis elegans as a model system we identify ATTF-6, a member of the AT-hook family, as a key factor for the expression of histone, piRNA, and 5S rDNA-SL1 (spliced leader 1) clusters. ATTF-6 is essential for C. elegans viability. It forms distinct nuclear foci at both piRNA and 5S rDNA-SL1 clusters. Loss of ATTF-6 leads to a depletion of histone mRNAs, SL1 transcripts, and piRNAs. Additionally, we demonstrate that ATTF-6 is required for the recruitment of USTC (Upstream Sequence Transcription Complex) to piRNA clusters, which is necessary for piRNA production. Collectively, our findings reveal a unifying role for an AT-hook transcription factor in promoting the expression of fundamental gene clusters.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.