Reconstruction and computer analysis of the structural and functional organization of the gene network regulating cholesterol biosynthesis in humans and the evolutionary characteristics of the genes involved in the network.

IF 0.9 Q3 AGRICULTURE, MULTIDISCIPLINARY Vavilovskii Zhurnal Genetiki i Selektsii Pub Date : 2024-12-01 DOI:10.18699/vjgb-24-94
A D Mikhailova, S A Lashin, V A Ivanisenko, P S Demenkov, E V Ignatieva
{"title":"Reconstruction and computer analysis of the structural and functional organization of the gene network regulating cholesterol biosynthesis in humans and the evolutionary characteristics of the genes involved in the network.","authors":"A D Mikhailova, S A Lashin, V A Ivanisenko, P S Demenkov, E V Ignatieva","doi":"10.18699/vjgb-24-94","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol is an essential structural component of cell membranes and a precursor of vitamin D, as well as steroid hormones. Humans and other animal species can absorb cholesterol from food. Cholesterol is also synthesized de novo in the cells of many tissues. We have previously reconstructed the gene network regulating intracellular cholesterol levels, which included regulatory circuits involving transcription factors from the SREBP (Sterol Regulatory Element-Binding Proteins) subfamily. The activity of SREBP transcription factors is regulated inversely depending on the intracellular cholesterol level. This mechanism is implemented with the participation of proteins SCAP, INSIG1, INSIG2, MBTPS1/S1P and MBTPS2/S2P. This group of proteins, together with the SREBP factors, is designated as \"cholesterol sensor\". An elevated cholesterol level is a risk factor for the development of cardiovascular diseases and may also be observed in obesity, diabetes and other pathological conditions. Systematization of information about the molecular mechanisms controlling the activity of SREBP factors and cholesterol biosynthesis in the form of a gene network and building new knowledge about the gene network as a single object is extremely important for understanding the molecular mechanisms underlying the predisposition to diseases. With a computer tool, ANDSystem, we have built a gene network regulating cholesterol biosynthesis. The gene network included data on: (1) the complete set of enzymes involved in cholesterol biosynthesis; (2) proteins that function as part of the \"cholesterol sensor\"; (3) proteins that regulate the activity of the \"cholesterol sensor\"; (4) genes encoding proteins of these groups; (5) genes whose transcription is regulated by SREBP factors (SREBP target genes). The gene network was analyzed and feedback loops that control the activity of SREBP factors were identified. These feedback loops involved the PPARG, NR0B2/SHP1, LPIN1, and AR genes and the proteins they encode. Analysis of the phylostratigraphic age of the genes showed that the ancestral forms of most human genes encoding the enzymes of cholesterol biosynthesis and the proteins of the \"cholesterol sensor\" may have arisen at early evolutionary stages (Cellular organisms (the root of the phylostratigraphic tree) and the stages of Eukaryota and Metazoa divergence). However, the mechanism of gene transcription regulation in response to changes in cholesterol levels may only have formed at later evolutionary stages, since the phylostratigraphic age of the genes encoding the transcription factors SREBP1 and SREBP2 corresponds to the stage of Vertebrata divergence.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"28 8","pages":"864-873"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-24-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cholesterol is an essential structural component of cell membranes and a precursor of vitamin D, as well as steroid hormones. Humans and other animal species can absorb cholesterol from food. Cholesterol is also synthesized de novo in the cells of many tissues. We have previously reconstructed the gene network regulating intracellular cholesterol levels, which included regulatory circuits involving transcription factors from the SREBP (Sterol Regulatory Element-Binding Proteins) subfamily. The activity of SREBP transcription factors is regulated inversely depending on the intracellular cholesterol level. This mechanism is implemented with the participation of proteins SCAP, INSIG1, INSIG2, MBTPS1/S1P and MBTPS2/S2P. This group of proteins, together with the SREBP factors, is designated as "cholesterol sensor". An elevated cholesterol level is a risk factor for the development of cardiovascular diseases and may also be observed in obesity, diabetes and other pathological conditions. Systematization of information about the molecular mechanisms controlling the activity of SREBP factors and cholesterol biosynthesis in the form of a gene network and building new knowledge about the gene network as a single object is extremely important for understanding the molecular mechanisms underlying the predisposition to diseases. With a computer tool, ANDSystem, we have built a gene network regulating cholesterol biosynthesis. The gene network included data on: (1) the complete set of enzymes involved in cholesterol biosynthesis; (2) proteins that function as part of the "cholesterol sensor"; (3) proteins that regulate the activity of the "cholesterol sensor"; (4) genes encoding proteins of these groups; (5) genes whose transcription is regulated by SREBP factors (SREBP target genes). The gene network was analyzed and feedback loops that control the activity of SREBP factors were identified. These feedback loops involved the PPARG, NR0B2/SHP1, LPIN1, and AR genes and the proteins they encode. Analysis of the phylostratigraphic age of the genes showed that the ancestral forms of most human genes encoding the enzymes of cholesterol biosynthesis and the proteins of the "cholesterol sensor" may have arisen at early evolutionary stages (Cellular organisms (the root of the phylostratigraphic tree) and the stages of Eukaryota and Metazoa divergence). However, the mechanism of gene transcription regulation in response to changes in cholesterol levels may only have formed at later evolutionary stages, since the phylostratigraphic age of the genes encoding the transcription factors SREBP1 and SREBP2 corresponds to the stage of Vertebrata divergence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
期刊最新文献
Computational identification of promising genetic markers associated with molecular mechanisms of reduced rice resistance to Rhizoctonia solani under excess nitrogen fertilization using gene network reconstruction and analysis methods. Computer analysis shows differences between mitochondrial miRNAs and other miRNAs. Gene networks and metabolomic screening analysis revealed specific pathways of amino acid and acylcarnitine profile alterations in blood plasma of patients with Parkinson's disease and vascular parkinsonism. MetArea: a software package for analysis of the mutually exclusive occurrence in pairs of motifs of transcription factor binding sites based on ChIP-seq data. Ontologies in modelling and analysing of big genetic data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1