Zehao Pan, Yuxian Qian, Yajing Wang, Te Zhang, Xuming Song, Hanling Ding, Rutao Li, Yijian Zhang, Zi Wang, Hui Wang, Wenjie Xia, Lei Wei, Lin Xu, Gaochao Dong, Feng Jiang
{"title":"STAT3 Inhibition Prevents Adaptive Resistance and Augments NK Cell Cytotoxicity to KRAS<sup>G12C</sup> Inhibitors in Nonsmall Cell Lung Cancer.","authors":"Zehao Pan, Yuxian Qian, Yajing Wang, Te Zhang, Xuming Song, Hanling Ding, Rutao Li, Yijian Zhang, Zi Wang, Hui Wang, Wenjie Xia, Lei Wei, Lin Xu, Gaochao Dong, Feng Jiang","doi":"10.1111/cas.70017","DOIUrl":null,"url":null,"abstract":"<p><p>KRAS<sup>G12C</sup> inhibitors exhibit conspicuous clinical response in KRAS<sup>G12C</sup>-mutant lung cancer, yet adaptive resistance, the rapid onset of intrinsic resistance, dampens their therapeutic success. Rational combination strategies could tackle this challenging problem. A high-throughput screening of a pharmacological library with 423 compounds revealed that napabucasin, a signal transducer and activator of transcription 3 (STAT3) inhibitor, synergistically potentiated the growth inhibition effect of the KRAS<sup>G12C</sup> inhibitor sotorasib in sensitive and resistant KRAS<sup>G12C</sup> NSCLC cell lines. Functional assays further revealed that the coordinated targeting of KRAS with STAT3 improved the inhibitory effect on tumor growth and augmented the infiltration and activation of natural killer (NK) cells within the tumor microenvironment. Mechanistically, KRAS<sup>G12C</sup> inhibition induced compensatory activation of STAT3, contingent on concomitant suppression of downstream ERK signaling, abrogated by napabucasin. Moreover, we unveiled and verified the binding site of phosphorylated STAT3 at the HLA-B promoter, an inhibitor ligand for NK cells. Our study dissected an unknown mechanism of adaptive resistance to KRAS<sup>G12C</sup> inhibitors, with the STAT3 activation sustaining the regrowth of tumor cells under KRAS inhibition and up-regulating HLA-B transcription to dampen the cytotoxicity of infiltrated NK cells.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.70017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
KRASG12C inhibitors exhibit conspicuous clinical response in KRASG12C-mutant lung cancer, yet adaptive resistance, the rapid onset of intrinsic resistance, dampens their therapeutic success. Rational combination strategies could tackle this challenging problem. A high-throughput screening of a pharmacological library with 423 compounds revealed that napabucasin, a signal transducer and activator of transcription 3 (STAT3) inhibitor, synergistically potentiated the growth inhibition effect of the KRASG12C inhibitor sotorasib in sensitive and resistant KRASG12C NSCLC cell lines. Functional assays further revealed that the coordinated targeting of KRAS with STAT3 improved the inhibitory effect on tumor growth and augmented the infiltration and activation of natural killer (NK) cells within the tumor microenvironment. Mechanistically, KRASG12C inhibition induced compensatory activation of STAT3, contingent on concomitant suppression of downstream ERK signaling, abrogated by napabucasin. Moreover, we unveiled and verified the binding site of phosphorylated STAT3 at the HLA-B promoter, an inhibitor ligand for NK cells. Our study dissected an unknown mechanism of adaptive resistance to KRASG12C inhibitors, with the STAT3 activation sustaining the regrowth of tumor cells under KRAS inhibition and up-regulating HLA-B transcription to dampen the cytotoxicity of infiltrated NK cells.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.