Rebecca Miriam Jedwab, Leonard Hoon, Caroline Luu, Bernice Redley
{"title":"Exploring Suitability of Low-Severity Rating Hospital Incident Reports for Machine Learning.","authors":"Rebecca Miriam Jedwab, Leonard Hoon, Caroline Luu, Bernice Redley","doi":"10.1097/CIN.0000000000001249","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic incident reporting is a key quality and a safety process for healthcare organizations that assists in evaluating performance and informing quality improvement initiatives. Although it is mandatory for high-severity incident reports to be investigated, the majority, classified as low severity, are seldom examined due to the large volume of reports, constraints of human cognitive capacity to process such large amounts of data, and the limited resources available in healthcare organizations. The purpose of this study was to investigate low-severity incident reports for suitability of future machine learning to identify actionable interventions for harm prevention. This qualitative descriptive study used a yearlong dataset of low incident severity rating reports to model the incident reporting documentation workflow and explored findings with five nursing and healthcare quality and safety experts. Incident severity reports were reported to have multiple conflicting issues including information duplication, subjective data, too many selection options, and absence of contextual information resulting in a lack of usefulness of information for machine learning. Next steps include analysis of a dataset for machine learning suitability. Recommendations include end-user involvement in system redesign to ensure hospital incident reports are comprised of meaningful data.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic incident reporting is a key quality and a safety process for healthcare organizations that assists in evaluating performance and informing quality improvement initiatives. Although it is mandatory for high-severity incident reports to be investigated, the majority, classified as low severity, are seldom examined due to the large volume of reports, constraints of human cognitive capacity to process such large amounts of data, and the limited resources available in healthcare organizations. The purpose of this study was to investigate low-severity incident reports for suitability of future machine learning to identify actionable interventions for harm prevention. This qualitative descriptive study used a yearlong dataset of low incident severity rating reports to model the incident reporting documentation workflow and explored findings with five nursing and healthcare quality and safety experts. Incident severity reports were reported to have multiple conflicting issues including information duplication, subjective data, too many selection options, and absence of contextual information resulting in a lack of usefulness of information for machine learning. Next steps include analysis of a dataset for machine learning suitability. Recommendations include end-user involvement in system redesign to ensure hospital incident reports are comprised of meaningful data.
期刊介绍:
For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.