Single-cell copy number calling and event history reconstruction.

Jack Kuipers, Mustafa Anıl Tuncel, Pedro F Ferreira, Katharina Jahn, Niko Beerenwinkel
{"title":"Single-cell copy number calling and event history reconstruction.","authors":"Jack Kuipers, Mustafa Anıl Tuncel, Pedro F Ferreira, Katharina Jahn, Niko Beerenwinkel","doi":"10.1093/bioinformatics/btaf072","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Copy number alterations are driving forces of tumour development and the emergence of intra-tumour heterogeneity. A comprehensive picture of these genomic aberrations is therefore essential for the development of personalised and precise cancer diagnostics and therapies. Single-cell sequencing offers the highest resolution for copy number profiling down to the level of individual cells. Recent high-throughput protocols allow for the processing of hundreds of cells through shallow whole-genome DNA sequencing. The resulting low read-depth data poses substantial statistical and computational challenges to the identification of copy number alterations.</p><p><strong>Results: </strong>We developed SCICoNE, a statistical model and MCMC algorithm tailored to single-cell copy number profiling from shallow whole-genome DNA sequencing data. SCICoNE reconstructs the history of copy number events in the tumour and uses these evolutionary relationships to identify the copy number profiles of the individual cells. We show the accuracy of this approach in evaluations on simulated data and demonstrate its practicability in applications to two breast cancer samples from different sequencing protocols.</p><p><strong>Availability and implementation: </strong>SCICoNE is available at https://github.com/cbg-ethz/SCICoNE.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Copy number alterations are driving forces of tumour development and the emergence of intra-tumour heterogeneity. A comprehensive picture of these genomic aberrations is therefore essential for the development of personalised and precise cancer diagnostics and therapies. Single-cell sequencing offers the highest resolution for copy number profiling down to the level of individual cells. Recent high-throughput protocols allow for the processing of hundreds of cells through shallow whole-genome DNA sequencing. The resulting low read-depth data poses substantial statistical and computational challenges to the identification of copy number alterations.

Results: We developed SCICoNE, a statistical model and MCMC algorithm tailored to single-cell copy number profiling from shallow whole-genome DNA sequencing data. SCICoNE reconstructs the history of copy number events in the tumour and uses these evolutionary relationships to identify the copy number profiles of the individual cells. We show the accuracy of this approach in evaluations on simulated data and demonstrate its practicability in applications to two breast cancer samples from different sequencing protocols.

Availability and implementation: SCICoNE is available at https://github.com/cbg-ethz/SCICoNE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞拷贝数调用和事件历史重建
动机:拷贝数改变是肿瘤发展和肿瘤内异质性出现的驱动力。因此,全面了解这些基因组畸变对于个性化和精确的癌症诊断和治疗的发展至关重要。单细胞测序为拷贝数分析提供了最高的分辨率,直至单个细胞的水平。最近的高通量方案允许通过浅层全基因组DNA测序处理数百个细胞。由此产生的低读取深度数据对拷贝数更改的识别提出了实质性的统计和计算挑战。结果:我们开发了SCICoNE,这是一种统计模型和MCMC算法,专门用于从浅全基因组DNA测序数据中分析单细胞拷贝数。SCICoNE重建了肿瘤中拷贝数事件的历史,并利用这些进化关系来识别单个细胞的拷贝数概况。我们在模拟数据评估中展示了这种方法的准确性,并展示了其在不同测序方案的两种乳腺癌样本应用中的实用性。可获得性:SCICoNE可在https://github.com/cbg-ethz/SCICoNE.Supplementary获取信息;补充数据可在Bioinformatics在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
dGAMLSS: An exact, distributed algorithm to fit Generalized Additive Models for Location, Scale, and Shape for privacy-preserving population reference charts. esloco: simulation-based estimation of local coverage in long-read DNA sequencing. PanForest: predicting genes in genomes using random forests. sedimix: A workflow for the analysis of hominin nuclear DNA sequences from sediments. PLXFPred: Interpretable cross-attention networks with hierarchical fusion of multi-modal features for predicting protein-ligand interactions and affinities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1