Essential roles of the unfolded protein response in intestinal physiology.

eGastroenterology Pub Date : 2024-12-31 eCollection Date: 2024-10-01 DOI:10.1136/egastro-2024-100129
Claudio Hetz, Juan Francisco Silva-Agüero, Lisa M Ellerby
{"title":"Essential roles of the unfolded protein response in intestinal physiology.","authors":"Claudio Hetz, Juan Francisco Silva-Agüero, Lisa M Ellerby","doi":"10.1136/egastro-2024-100129","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal epithelium serves as an essential interface between the host and microbiota, regulating innate and adaptive immunity, absorption of nutrients and systemic metabolism, and mediating bidirectional communication with the nervous system. The intestinal epithelium suffers constant challenges to the proteostasis machinery due to its exposure to the dynamically changing and microbial laden lumenal gut environment and to the high secretory demand placed on multiple epithelial cell types to accommodate gut and systemic physiology-especially goblet, enteroendocrine and Paneth cells. In all cases, intestinal cells require an active unfolded protein response (UPR) to sustain their physiological function, the main pathway that monitors and adjusts secretory function changes in the environment. A specialised endoplasmic reticulum (ER) stress sensor uniquely expressed in epithelial cells lining mucosal surfaces, termed inositol-requiring transmembrane kinase/endoribonuclease β, has specific roles in intestinal epithelial homeostasis, regulating mucus production and communication with microbiota. Chronic ER stress or genetic mutations affecting key UPR mediators contribute to the occurrence of inflammatory bowel disease and ulcerative colitis, in addition to colon cancer. Here, we review recent advances linking the UPR and ER stress with gut physiology and intestinal disease. Therapeutic strategies to alleviate ER stress or enforce UPR function to improve intestinal function in ageing and in bowel diseases are also discussed.</p>","PeriodicalId":72879,"journal":{"name":"eGastroenterology","volume":"2 4","pages":"e100129"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eGastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/egastro-2024-100129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The intestinal epithelium serves as an essential interface between the host and microbiota, regulating innate and adaptive immunity, absorption of nutrients and systemic metabolism, and mediating bidirectional communication with the nervous system. The intestinal epithelium suffers constant challenges to the proteostasis machinery due to its exposure to the dynamically changing and microbial laden lumenal gut environment and to the high secretory demand placed on multiple epithelial cell types to accommodate gut and systemic physiology-especially goblet, enteroendocrine and Paneth cells. In all cases, intestinal cells require an active unfolded protein response (UPR) to sustain their physiological function, the main pathway that monitors and adjusts secretory function changes in the environment. A specialised endoplasmic reticulum (ER) stress sensor uniquely expressed in epithelial cells lining mucosal surfaces, termed inositol-requiring transmembrane kinase/endoribonuclease β, has specific roles in intestinal epithelial homeostasis, regulating mucus production and communication with microbiota. Chronic ER stress or genetic mutations affecting key UPR mediators contribute to the occurrence of inflammatory bowel disease and ulcerative colitis, in addition to colon cancer. Here, we review recent advances linking the UPR and ER stress with gut physiology and intestinal disease. Therapeutic strategies to alleviate ER stress or enforce UPR function to improve intestinal function in ageing and in bowel diseases are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未折叠蛋白反应在肠道生理学中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional dyspepsia and gastroparesis: are they distinct disorders, a spectrum of diseases or one disease? Modifiable factors for irritable bowel syndrome: evidence from Mendelian randomisation approach. Essential roles of the unfolded protein response in intestinal physiology. Faecal microbiota transplantation for eradicating Helicobacter pylori infection: clinical practice and theoretical postulation. Endocrine pathology in young rabbits with cystic fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1