{"title":"Periodate-Mediated Cross-Linking for the Preparation of Catechol Conjugated Albumin Nanoparticles Used for in Vitro Drug Delivery.","authors":"Eda Argitekin, Ozlem Erez, Gulcin Cakan-Akdogan, Yasar Akdogan","doi":"10.1021/acsabm.4c01737","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugation of serum albumin protein with catechol-containing dopamine molecules provides an alternative method for the preparation of albumin nanoparticles (NPs). A commonly used desolvation method utilizes glutaraldehyde as a cross-linking agent. Here, the catechol cross-linking mechanism is used instead of glutaraldehyde providing advantages to prevent toxicity and an undesirable reaction of glutaraldehyde with cargo molecules. Covalent cross-linking between dopamine conjugated bovine serum albumin (D-BSA) proteins was obtained in the presence of sodium periodate (NaIO<sub>4</sub>) as an oxidizer. As a result, spherical D-BSA NPs with a uniform size distribution of around 100 nm in diameter and negative zeta potential around -28 mV were prepared. Optimal conditions were reached when a dopamine:IO<sub>4</sub><sup>-</sup> molar ratio of 2:1, pH 7.4 of the medium, and acetone as the desolvating agent were used. Furthermore, the obtained NPs display antioxidant properties, have rapid biodegradability in the presence of trypsin, and have a high doxorubicin (DOX) loading (9.1%) with a sustainable drug release. DOX loaded D-BSA NPs also caused up to 90% breast cancer cell (MCF-7) death within 24 h. These results show that drug carrying albumin NPs can alternatively be prepared via covalently cross-linked catechol groups and used in drug delivery studies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugation of serum albumin protein with catechol-containing dopamine molecules provides an alternative method for the preparation of albumin nanoparticles (NPs). A commonly used desolvation method utilizes glutaraldehyde as a cross-linking agent. Here, the catechol cross-linking mechanism is used instead of glutaraldehyde providing advantages to prevent toxicity and an undesirable reaction of glutaraldehyde with cargo molecules. Covalent cross-linking between dopamine conjugated bovine serum albumin (D-BSA) proteins was obtained in the presence of sodium periodate (NaIO4) as an oxidizer. As a result, spherical D-BSA NPs with a uniform size distribution of around 100 nm in diameter and negative zeta potential around -28 mV were prepared. Optimal conditions were reached when a dopamine:IO4- molar ratio of 2:1, pH 7.4 of the medium, and acetone as the desolvating agent were used. Furthermore, the obtained NPs display antioxidant properties, have rapid biodegradability in the presence of trypsin, and have a high doxorubicin (DOX) loading (9.1%) with a sustainable drug release. DOX loaded D-BSA NPs also caused up to 90% breast cancer cell (MCF-7) death within 24 h. These results show that drug carrying albumin NPs can alternatively be prepared via covalently cross-linked catechol groups and used in drug delivery studies.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.