{"title":"Effects of Transmembrane Phenylalanine Residues on γ-Secretase-Mediated Notch-1 Proteolysis.","authors":"Shweta R Malvankar, Michael S Wolfe","doi":"10.1021/acschemneuro.4c00790","DOIUrl":null,"url":null,"abstract":"<p><p>γ-Secretase is a presenilin-containing intramembrane aspartyl protease complex that cleaves within the transmembrane domain (TMD) of nearly 150 substrates, with the amyloid precursor protein (APP) being the most well studied. APP cleavage by γ-secretase generates amyloid β-peptides (Aβ) that pathologically deposit in Alzheimer's disease. The APP TMD substrate undergoes initial endoproteolysis (ε-cleavage) followed by processive carboxypeptidase trimming of long Aβ intermediates in ∼tripeptide intervals. Although γ-secretase cleavage of Notch1 is essential in developmental biology and is altered in many cancers, the processing of this cell-surface receptor is relatively understudied. Only one sequence specificity rule is known for γ-secretase substrate processing: Aromatic residues such as phenylalanine are not tolerated in the P2' position with respect to any processing event on the APP TMD. Here we show using biochemical and mass spectrometry (MS) techniques that this specificity rule holds for Notch1 as well. Analysis of products from the reactions of a purified enzyme complex and Notch1 TMD substrate variants revealed that P2' Phe relative to ε-site cleavage reduced proteolysis and shifted initial cleavage N-terminally by one residue. Double Phe mutation near the ε site resulted in reduced proteolysis with shifting to two major initial cleavage sites, one N-terminally and one C-terminally, both of which avoid Phe in the P2' position. Additionally, three natural Phe residues were mutated to the corresponding residues in the APP TMD, which led to increased ε proteolysis. Thus, Phe residues can affect the enzyme reaction rate as well as cleavage site specificity in the Notch1 TMD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00790","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
γ-Secretase is a presenilin-containing intramembrane aspartyl protease complex that cleaves within the transmembrane domain (TMD) of nearly 150 substrates, with the amyloid precursor protein (APP) being the most well studied. APP cleavage by γ-secretase generates amyloid β-peptides (Aβ) that pathologically deposit in Alzheimer's disease. The APP TMD substrate undergoes initial endoproteolysis (ε-cleavage) followed by processive carboxypeptidase trimming of long Aβ intermediates in ∼tripeptide intervals. Although γ-secretase cleavage of Notch1 is essential in developmental biology and is altered in many cancers, the processing of this cell-surface receptor is relatively understudied. Only one sequence specificity rule is known for γ-secretase substrate processing: Aromatic residues such as phenylalanine are not tolerated in the P2' position with respect to any processing event on the APP TMD. Here we show using biochemical and mass spectrometry (MS) techniques that this specificity rule holds for Notch1 as well. Analysis of products from the reactions of a purified enzyme complex and Notch1 TMD substrate variants revealed that P2' Phe relative to ε-site cleavage reduced proteolysis and shifted initial cleavage N-terminally by one residue. Double Phe mutation near the ε site resulted in reduced proteolysis with shifting to two major initial cleavage sites, one N-terminally and one C-terminally, both of which avoid Phe in the P2' position. Additionally, three natural Phe residues were mutated to the corresponding residues in the APP TMD, which led to increased ε proteolysis. Thus, Phe residues can affect the enzyme reaction rate as well as cleavage site specificity in the Notch1 TMD.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research