Ruixuan Wan, Mostafa Mahmoudi, Martin A Edwards, Bo Zhang
{"title":"Critical Role of Molecular Adsorption on Electrocatalysis at Single Nanoparticles.","authors":"Ruixuan Wan, Mostafa Mahmoudi, Martin A Edwards, Bo Zhang","doi":"10.1021/acs.analchem.4c05326","DOIUrl":null,"url":null,"abstract":"<p><p>We report a mechanistic study of the electrocatalytic response of single Pt nanoparticles (NPs) on a carbon ultramicroelectrode (UME) in a hydrazine (N<sub>2</sub>H<sub>4</sub>) solution. Using a NP collision approach, our study shows their catalytic response is characterized by a sharp, <50 μs-long current spike followed by a steady step-current signal. Our results suggest that the current spike is due to the quick oxidation of N<sub>2</sub>H<sub>4</sub> molecules preadsorbed onto the NP surface, while the step current reflects the continuous catalytic oxidation of protonated hydrazine (N<sub>2</sub>H<sub>5</sub><sup>+</sup>), which goes through a deprotonation and adsorption step on Pt. Since each N<sub>2</sub>H<sub>5</sub><sup>+</sup> molecule releases five H<sup>+</sup> upon complete oxidation, a drastic decrease in local pH can be expected in the vicinity of the NP. This pH shift in turn limits the rate of adsorption and the steady-state oxidation current one can observe from each colliding particle. Our study reveals the key importance of molecular adsorption and the changing local chemical environment (e.g., pH) to the observed catalytic response of single NPs and highlights that steady-state currents in their measurement may be chemically or mass-transport limited.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05326","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a mechanistic study of the electrocatalytic response of single Pt nanoparticles (NPs) on a carbon ultramicroelectrode (UME) in a hydrazine (N2H4) solution. Using a NP collision approach, our study shows their catalytic response is characterized by a sharp, <50 μs-long current spike followed by a steady step-current signal. Our results suggest that the current spike is due to the quick oxidation of N2H4 molecules preadsorbed onto the NP surface, while the step current reflects the continuous catalytic oxidation of protonated hydrazine (N2H5+), which goes through a deprotonation and adsorption step on Pt. Since each N2H5+ molecule releases five H+ upon complete oxidation, a drastic decrease in local pH can be expected in the vicinity of the NP. This pH shift in turn limits the rate of adsorption and the steady-state oxidation current one can observe from each colliding particle. Our study reveals the key importance of molecular adsorption and the changing local chemical environment (e.g., pH) to the observed catalytic response of single NPs and highlights that steady-state currents in their measurement may be chemically or mass-transport limited.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.