Exploring the Effect of Nanopore Microstructures on Crystallization and the Evolution of Molecular Assembly Structure by 19F Solid-State Nuclear Magnetic Resonance Spectroscopy.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-02-13 DOI:10.1021/acs.analchem.4c06353
Keke Zhang, Mengyang Cai, Mengwei Wang, Pengpeng Yang, Kongying Zhu, Zhenfu Wang, Junbo Gong, Hanjie Ying
{"title":"Exploring the Effect of Nanopore Microstructures on Crystallization and the Evolution of Molecular Assembly Structure by <sup>19</sup>F Solid-State Nuclear Magnetic Resonance Spectroscopy.","authors":"Keke Zhang, Mengyang Cai, Mengwei Wang, Pengpeng Yang, Kongying Zhu, Zhenfu Wang, Junbo Gong, Hanjie Ying","doi":"10.1021/acs.analchem.4c06353","DOIUrl":null,"url":null,"abstract":"<p><p>The pore microstructure of mesoporous materials has a vital influence on molecular movement and assembly as well as crystallization. Nonetheless, previous studies have predominantly concentrated on the impact of pore size and pore shape on molecular assembly and nucleation outcomes; investigations delving into the effects of more complex pore structures on molecular assembly and nucleation behaviors were absent. In this study, evolution of the molecular self-assembly process of flufenamic acid (FFA) confined in mesoporous materials with different microstructures was monitored by in situ <sup>19</sup>F solid-state NMR spectroscopy. It was demonstrated that tortuosity, as a microstructural parameter of porous materials, has the ability to determine the molecular assembly process and nucleation behaviors of FFA. The results indicated that molecules in pores with high tortuosity tend to aggregate to an amorphous plug, while those in less tortuous nanopores are inclined to adsorb on the pore surface forming molecular layers. Besides that, this work provides the first direct proof that a mixture of two molecular layer structures exists on the FFA-silica surface through <sup>19</sup>F solid-state NMR spectroscopy. This study explores the relationship between the microstructure of porous materials and molecular assembly, which can inform drug delivery, electronic deposition, and biomineralization.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06353","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pore microstructure of mesoporous materials has a vital influence on molecular movement and assembly as well as crystallization. Nonetheless, previous studies have predominantly concentrated on the impact of pore size and pore shape on molecular assembly and nucleation outcomes; investigations delving into the effects of more complex pore structures on molecular assembly and nucleation behaviors were absent. In this study, evolution of the molecular self-assembly process of flufenamic acid (FFA) confined in mesoporous materials with different microstructures was monitored by in situ 19F solid-state NMR spectroscopy. It was demonstrated that tortuosity, as a microstructural parameter of porous materials, has the ability to determine the molecular assembly process and nucleation behaviors of FFA. The results indicated that molecules in pores with high tortuosity tend to aggregate to an amorphous plug, while those in less tortuous nanopores are inclined to adsorb on the pore surface forming molecular layers. Besides that, this work provides the first direct proof that a mixture of two molecular layer structures exists on the FFA-silica surface through 19F solid-state NMR spectroscopy. This study explores the relationship between the microstructure of porous materials and molecular assembly, which can inform drug delivery, electronic deposition, and biomineralization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Neural Network–Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells Quantitative Characterization of Organosilane Monolayers by Oxidative Dissociation of Monolayer Molecules Self-Localized Plasmonic Nanocavity Strategy for the Glycosylation Detection of Glioblastoma Extracellular Vesicles Feature Wavelengths for Quantifying Methane Concentrations Using Shortwave Infrared Hyperspectral Imaging: A Controlled Condition Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1