Release of Neutrals in Electron-Induced Ligand Separation from MeCpPtMe3: Theory Meets Experiment.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-02-27 Epub Date: 2025-02-13 DOI:10.1021/acs.jpca.4c08259
Hlib Lyshchuk, Alexey V Verkhovtsev, Jaroslav Kočišek, Juraj Fedor, Andrey V Solov'yov
{"title":"Release of Neutrals in Electron-Induced Ligand Separation from MeCpPtMe<sub>3</sub>: Theory Meets Experiment.","authors":"Hlib Lyshchuk, Alexey V Verkhovtsev, Jaroslav Kočišek, Juraj Fedor, Andrey V Solov'yov","doi":"10.1021/acs.jpca.4c08259","DOIUrl":null,"url":null,"abstract":"<p><p>The interest in the electron impact-induced ligand release from MeCpPtMe<sub>3</sub> [trimethyl(methylcyclopentadienyl)platinum(IV)] is motivated by its widespread use as a precursor in focused electron and ion beam nanofabrication. By experimentally studying the electron impact dissociative ionization of MeCpPtMe<sub>3</sub> under single-collision conditions, we have found that the removal of two methyl radicals is energetically more favorable than the removal of one radical and even energetically comparable to the nondissociative ionization of MeCpPtMe<sub>3</sub>. This observation is explained by the structural rearrangement of the MeCpPtMe<sub>3</sub><sup>+</sup> ion prior to dissociation, resulting in the removal of ethane instead of two methyl groups. This fragmentation pathway is computationally confirmed and studied by irradiation-driven molecular dynamics (IDMD) simulations. The formation of complex molecules in irradiation-induced molecular dissociation is a general phenomenon that can occur in various molecular systems. This study explains the puzzling results of previous experiments with MeCpPtMe<sub>3</sub> molecules and highlights the use of the IDMD approach to describe radiation-induced chemical transformations in molecular systems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2016-2023"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08259","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interest in the electron impact-induced ligand release from MeCpPtMe3 [trimethyl(methylcyclopentadienyl)platinum(IV)] is motivated by its widespread use as a precursor in focused electron and ion beam nanofabrication. By experimentally studying the electron impact dissociative ionization of MeCpPtMe3 under single-collision conditions, we have found that the removal of two methyl radicals is energetically more favorable than the removal of one radical and even energetically comparable to the nondissociative ionization of MeCpPtMe3. This observation is explained by the structural rearrangement of the MeCpPtMe3+ ion prior to dissociation, resulting in the removal of ethane instead of two methyl groups. This fragmentation pathway is computationally confirmed and studied by irradiation-driven molecular dynamics (IDMD) simulations. The formation of complex molecules in irradiation-induced molecular dissociation is a general phenomenon that can occur in various molecular systems. This study explains the puzzling results of previous experiments with MeCpPtMe3 molecules and highlights the use of the IDMD approach to describe radiation-induced chemical transformations in molecular systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Correction to "Thermochemistry of Gas-Phase Thermal Oxidation of C2 to C8 Perfluorinated Sulfonic Acids with Extrapolation to C16". Evaluation of Infrared Intensities Using Diffusion Monte Carlo. The Source of Some Empirical Density Functionals van der Waals Forces. Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1