Chemical profiling of surviving cancer cells using ToF-SIMS and MCR analysis discriminates cell components.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analytical Methods Pub Date : 2025-02-14 DOI:10.1039/d4ay02238f
Auraya Manaprasertsak, Robin Rydbergh, Qicheng Wu, Maria Slyusarenko, Christopher Carroll, Sarah R Amend, Sofie Mohlin, Kenneth J Pienta, Per Malmberg, Emma U Hammarlund
{"title":"Chemical profiling of surviving cancer cells using ToF-SIMS and MCR analysis discriminates cell components.","authors":"Auraya Manaprasertsak, Robin Rydbergh, Qicheng Wu, Maria Slyusarenko, Christopher Carroll, Sarah R Amend, Sofie Mohlin, Kenneth J Pienta, Per Malmberg, Emma U Hammarlund","doi":"10.1039/d4ay02238f","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells survive treatment through mechanisms that remain unclear. This study investigates the chemical changes that occur in cancer cells after treatment, focusing on lipid metabolism as a potential marker for survival and resistance. Using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and advanced multivariate statistical analysis, we compared the chemical profiles of untreated and surviving cancer cells. Region-of-Interest (ROI) analysis revealed distinct differences in the lipid compartments, with surviving cancer cells showing significant accumulation of lipid droplets. While Principal Component Analysis (PCA) was able to differentiate the chemistry of untreated and surviving cancer cells as well as their cellular components, Multivariate Curve Resolution (MCR) provided a clearer and more detailed distinction, enabling the identification of specific cellular features such as the cytoplasm, nucleus, and lipid droplets within the surviving cells. The separation of the chemistry in nucleus and lipid droplets emphasizes the effectiveness in complex spectral analysis. Furthermore, the ability to map the distribution of lipid droplets in surviving cells can advance our understanding of how these structures contribute to cancer cell survival during treatment. The study highlights the importance of lipid droplets as potential biomarkers for cancer cell adaptation and survival post-treatment, with implications for developing new therapeutic strategies.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay02238f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer cells survive treatment through mechanisms that remain unclear. This study investigates the chemical changes that occur in cancer cells after treatment, focusing on lipid metabolism as a potential marker for survival and resistance. Using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and advanced multivariate statistical analysis, we compared the chemical profiles of untreated and surviving cancer cells. Region-of-Interest (ROI) analysis revealed distinct differences in the lipid compartments, with surviving cancer cells showing significant accumulation of lipid droplets. While Principal Component Analysis (PCA) was able to differentiate the chemistry of untreated and surviving cancer cells as well as their cellular components, Multivariate Curve Resolution (MCR) provided a clearer and more detailed distinction, enabling the identification of specific cellular features such as the cytoplasm, nucleus, and lipid droplets within the surviving cells. The separation of the chemistry in nucleus and lipid droplets emphasizes the effectiveness in complex spectral analysis. Furthermore, the ability to map the distribution of lipid droplets in surviving cells can advance our understanding of how these structures contribute to cancer cell survival during treatment. The study highlights the importance of lipid droplets as potential biomarkers for cancer cell adaptation and survival post-treatment, with implications for developing new therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
期刊最新文献
An economical fluorescent method for microplastic detection in soil samples. Elastic scattering spectrum fused with Raman spectrum for rapid classification of colorectal cancer tissues. Preconcentration-enhanced electrochemical detection of paraoxon in food and environmental samples using reduced graphene oxide-modified disposable sensors. Qualitative and quantitative analyses of the changes in the chemical composition of frankincense before and after stir-frying using GC-MS and LC-MS. Recent advances in development of glucose nanosensors for cellular analysis and other applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1