Large-sized and highly crystalline ceria nanorods with abundant Ce3+ species achieve efficient intracellular ROS scavenging.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2025-02-14 DOI:10.1039/d4nh00639a
Trung Hieu Vu, Ha-Rim An, Phuong Thy Nguyen, Jiwon Seo, Chang Yeon Kim, Ji-In Park, Byoungchul Son, Hyeran Kim, Hyun Uk Lee, Moon Il Kim
{"title":"Large-sized and highly crystalline ceria nanorods with abundant Ce<sup>3+</sup> species achieve efficient intracellular ROS scavenging.","authors":"Trung Hieu Vu, Ha-Rim An, Phuong Thy Nguyen, Jiwon Seo, Chang Yeon Kim, Ji-In Park, Byoungchul Son, Hyeran Kim, Hyun Uk Lee, Moon Il Kim","doi":"10.1039/d4nh00639a","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular reactive oxygen species (ROS) are associated with various inflammatory physiological processes and diseases, highlighting the need for their regulation to mitigate the detrimental effects of oxidative stress and to reduce cellular damage and disease progression. Here, we demonstrate cerium oxide (ceria) nanorods synthesized using a sol-gel method followed by heat treatment, called \"AHT-CeNRs\", as an efficient intracellular ROS scavenger. The synthesized AHT-CeNRs exhibited exceptional superoxide dismutase (SOD) and catalase (CAT)-like activities, both of which are crucial for converting ROS into harmless products. This was attributed to their high crystallinity, large surface area, numerous defects including oxygen vacancies, and abundant Ce<sup>3+</sup> species. AHT-CeNRs exhibited higher CAT-like activities than natural CAT and conventional nanozymes, with a more than five-fold lower <i>K</i><sub>m</sub>. When tested on HaCaT human keratinocyte cells, AHT-CeNRs primarily localized to the membrane but effectively scavenged intracellular ROS, potentially through their transmembrane catalytic action without disrupting the membrane. This contrasts with conventional antioxidant nanoparticles that act within the cytosol after penetrating the plasma membrane. AHT-CeNRs maintained cell viability by efficiently scavenging ROS, resulting in approximately 4-fold and 2-fold lower levels of inducible nitric oxide synthase (iNOS) and lactate dehydrogenase (LDH) compared to those in ROS-induced inflammation-stimulator lipopolysaccharide (LPS)-treated control groups, respectively. This simple yet effective method for intracellular ROS scavenging using AHT-CeNRs holds great potential for applications in cell and <i>in vivo</i> therapeutics to regulate intracellular ROS levels.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00639a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular reactive oxygen species (ROS) are associated with various inflammatory physiological processes and diseases, highlighting the need for their regulation to mitigate the detrimental effects of oxidative stress and to reduce cellular damage and disease progression. Here, we demonstrate cerium oxide (ceria) nanorods synthesized using a sol-gel method followed by heat treatment, called "AHT-CeNRs", as an efficient intracellular ROS scavenger. The synthesized AHT-CeNRs exhibited exceptional superoxide dismutase (SOD) and catalase (CAT)-like activities, both of which are crucial for converting ROS into harmless products. This was attributed to their high crystallinity, large surface area, numerous defects including oxygen vacancies, and abundant Ce3+ species. AHT-CeNRs exhibited higher CAT-like activities than natural CAT and conventional nanozymes, with a more than five-fold lower Km. When tested on HaCaT human keratinocyte cells, AHT-CeNRs primarily localized to the membrane but effectively scavenged intracellular ROS, potentially through their transmembrane catalytic action without disrupting the membrane. This contrasts with conventional antioxidant nanoparticles that act within the cytosol after penetrating the plasma membrane. AHT-CeNRs maintained cell viability by efficiently scavenging ROS, resulting in approximately 4-fold and 2-fold lower levels of inducible nitric oxide synthase (iNOS) and lactate dehydrogenase (LDH) compared to those in ROS-induced inflammation-stimulator lipopolysaccharide (LPS)-treated control groups, respectively. This simple yet effective method for intracellular ROS scavenging using AHT-CeNRs holds great potential for applications in cell and in vivo therapeutics to regulate intracellular ROS levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Engineering energy bands in 0D-2D hybrid photodetectors: Cu-doped InP quantum dots on a type-III SnSe2/MoTe2 heterojunction. Expression of concern: Electrothermal patches driving the transdermal delivery of insulin. One-dimensional molecular nanostructures interacting with two-dimensional metals. Expression of concern: Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs. Regulation of closed pores in hard carbon for enhanced electrochemical sodium storage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1